
343

CHAPTER 6

Visual objects

Controls ...345
Components vs controls 346

Components property 348
Parent 349

Containers 351
There are controls and then there are controls 351

Mouse events 353
Keyboard events 356

KeyPreview 357
Owner draw 367

Owner draw vs application styles 369
Drag and drop 369

OnDragOver 369
OnDragDrop 371
TDragObject 372

Canvas ..374
Drawing tools 375

Pen 376
Brush 379
Font 382

Key properties 385
Minor properties 385

Drawing operations 387
Geometric operations 387
Text operations 388
Bitblts 391
ClipRect 392

TBitmap 393
File formats 394
Draw and StretchDraw 396

Transparency 396
Low-level manipulation 396

Pixmaps 399
Printing 400
QPainter 400

��������	

��
�
���

���������
�������
���
����

����
�

344

Forms .. 404
Opening and closing forms 404

Form variables 407
Inter-system differences 409
Form events 409

KeyPreview 411
Enter as tab 411

Forms are objects 412
Class methods 413
Internal modularity 414
Interfaces and forms 415

Splash screens 418
Asynchronous processing 421

Posting reference counted objects 425

��������	

��
�
���

���������
�������
���
����

����
�

345

CHAPTER 6

Visual objects

THE BASIC FORM DESIGN SECTION of the previous chapter covered what you
need to know about form layout and the design-time behavior of visual controls.
It was, however, rather short on code. This chapter is about writing code that
deals with controls, forms, and other visual objects.

Controls

Everything that’s visible on your applications’ windows at run-time is a
control. The form’s themselves are controls. The buttons, scrollbars, menus,
and edit boxes are controls. The control bars and the static text are controls.
(See Figure 6-1.)

In object terms, every control is a component. Every component is a per-
sistent object. This means that there are some things that are true of all controls.
Obviously, there are also plenty of things that are not true of all controls, and
these are the details that you’ll have to master to work with a particular
control, but you’ll find it a lot easier to master the specifics once you under-
stand the basics.

Figure 6-1. Control inheritance

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

346

Components vs controls

I’ve said it before: All controls are components, but some components are
not controls. All components have the published Name and Tag properties;
all components have an Owner. The Name property isn’t particularly
important at run-time—you’re much more likely to refer to a component
named Joe by the Pascal identifier Joe, a reference to the object, than by the
string 'Joe'—but the Owner is. While you’ll very rarely write code that explicitly
refers to Owner, you implicitly set the Owner every time you create a com-
ponent at runtime; the AOwner parameter to the Create() constructor becomes
the new component’s Owner.

It’s important to get the Owner right. When a component is freed, it frees
all the components it owns. If you pass the wrong Owner to Create(), your
component may be freed when you don’t expect it. This in turn can lead to
segmentation violations as your application tries to refer to memory that has
been released.

Fortunately, there are really only two common choices for component
ownership, so the chances that you will get it wrong are slim.

1. When dynamically creating a component as part of a form, the
Owner should be the form itself. Within an event handler or other
form method, you’d refer to the form via the Self pointer. For example,
NewDialog := TOpenDialog.Create(Self);

2. When manually creating a form, as you might do if it is not used
regularly, you would typically set Owner to Application. (See the
TApplication section of Chapter 7.) This assures that the form is
destroyed cleanly, allowing it to close files or do any other necessary
cleanup, when the application closes.

Note

Delphi and Kylix use somewhat different memory management
strategies. Delphi uses an internal sub-allocator, which requests rel-
atively large blocks from the operating system, and then splits them
into smaller pieces to satisfy requests that are ‘too small’ to pass on
to the OS. This means that dereferencing a ‘tombstoned’ pointer—
one that points to memory that has already been freed–is not guar-
anteed to cause an exception. Kylix uses an external sub-allocator,
that ‘lives’ in libc.so.6. As with Delphi, dereferencing freed memory
may or may not raise an exception. See the Memory section of
Chapter 8 for more information.

Kylix is not Delphi

��������	

��
�
���

���������
�������
���
����

����
�

Controls

347347

..

Unowned components

There is one common special case where you might set Owner to Nil.
Many components and forms are created and destroyed within a single
procedure. If an Open File dialog is only occasionally needed, you may
prefer to create it on the fly, rather than slow form creation and consume
extra system resources by dropping it on the form and having it always
available.

with TOpenDialog.Create(Nil) do

try

 Title := 'Dynamic!';

 Filter := 'My files (*.my)|All files (*)';

 if Execute then

 {do something with FileName};

finally

 Free;

end;

Similarly, if a dialog like an About box is rarely invoked, you might also prefer
to create it on the fly, rather than create it at run-time and/or waste system
resources by keeping it around after the user closes it.

with TAboutBox.Create(Nil) do

try

 ShowModal;

finally

 Release; // Note that we Release a form, not Free it

end;

In both these examples, Owner is set to Nil, by passing Nil to Create. This
means that the component has no Owner, and will never be automatically
freed. This is obviously risky, so you should only do it where the component
is freed in a try/finally block that immediately follows the call to Create. Why
might you want to write such risky code? It’s an optimization: When you
Create an owned component, its Owner adds it to a list of components it
owns. When you Free an owned component, the Owner removes it from its
list of owned components. Creating and freeing an unowned component is

..

a little faster than creating and freeing an owned component.

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

348

Note that components are special in being owned; objects that are not
components are not owned, and must be explicitly freed.1 Forms that have
object fields (bitmaps, semaphores, and so on) typically Create them in their
OnCreate event handler and Free them in their OnDestroy event handler.
Non-form objects that have object fields typically Create them in a con-
structor and Free them in a destructor.

Components property

Every component has a Components array property, and a ComponentCount
property. At run-time, the ComponentCount contains the number of com-
ponents this component owns, and the Components array contains a
reference to every component this component owns, indexed from 0 to
ComponentCount – 1. Obviously, most components’ ComponentCount is 0.
A form or a frame’s Component’s array, however, contains references to every
component on the form or frame.

You would write code that walks the Components array if you wanted to
do something to every instance of a certain type of component on the form,
but didn’t want to hardcode the list of which components those were into
your application. Walking the list may be slower, but it can be smaller and it
is certainly safer. For example, suppose you want to change the color of all
the TEdit’s on a form in response to various state changes.

procedure TGarishFrm.Recolor(Color: TColor);

var

 Index: integer;

begin

 for Index := 0 to ComponentCount - 1 do

 if Components[Index] is TEdit then

 TEdit(Components[Index]).Color := Color;

end; // TGarishFrm.Recolor

1. The general rule is “Free what you Create”, but there are a number of exceptions:

• You don’t need to free owned components.

• You Release forms, you don’t Free them.

• You don’t need to free objects that you refer to only via interface references.

��������	

��
�
���

���������
�������
���
����

����
�

Controls

349349

Parent

Anything you can drop on a form is a component, but anything that you can
see at run-time is a control. Controls are components that have a number of
new methods and properties, including a bounds rectangle—Top, Left, Height,
and Width—and a Parent.

A control’s Top and Left are always relative to its Parent, whether this is
the form itself or a container nested twelve levels deep. (A form doesn’t have
a Parent; a form’s Top and Left is always relative to the desktop work area,
which is the part of the screen not covered with system panels and task bars.)
A control is only Visible and Enabled when its Parent is Visible and Enabled;
if a container has been obscured by another container being brought to front
over it, all the controls on the obscured container are hidden as well.

There is a difference between parentage and ownership. All controls on
the form are owned by the form, regardless of their parentage. Only some of
the controls that a form owns are its direct children; some are children of
container controls whose Parent is the form, and some are children of con-
tainer controls whose Parent is a container control whose Parent is the form,
and so on.

When you create a form in the form designer, Kylix will automatically set
the Parent of all the controls you drop on it. When you create them at run-
time, the library code gets parentage information from the form resource,
and properly sets the Parent of all controls on the form. However, if you
create a control at run-time, you have to be sure to set its Parent. If you don’t
set the control’s Parent, it won’t be visible.

When you create a control at run-time, its Top and Left will be set to 0,
and it will be created with a default Height and Width. (The default varies
from control to control.) You will generally either set Align to alClient, to
have the new control fill its container, or you will explicitly set both Top and
Left, and perhaps Height and Width.

For example, one common use of dynamically created controls is to
drop one of several different possible frames into a container like a panel or

Tip

Not setting Parent when you create a control dynamically is a com-
mon mistake made by people new to Kylix.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

350

a group box. You might need to do this in a property editor for a word pro-
cessor that allows you to include several different types of objects, like
HTML’s , , <table>, and <script> elements. Each object would be
modeled by a different Pascal object, and each Pascal object would be able to
tell you what frame to drop into the editing container to edit the object’s
properties. Thus, you would free any old frame, create the new frame, and set
its Parent as

FreeAndNil(CurrentFrame); // Safe even if CurrentFrame = Nil

// Using FreeAndNil means that CurrentFrame always holds either a valid value

// or Nil, even if CurrentObject.EditFrame.Create raises an exception.

CurrentFrame := CurrentObject.EditFrame.Create(Self);

// EditFrame returns a "class of TFrame" result

CurrentFrame.Parent := EditPnl;

CurrentFrame.Visible := True;

// Cheap if already Visible, and necessary if not

and you would set the size and position as either

CurrentFrame.Align := alClient;

or something like

CurrentFrame.Top := Inset; // Some constant

CurrentFrame.Left := Inset;

CurrentFrame.Height := EditFrame.ClientHeight – Inset * 2;

CurrentFrame.Width := EditFrame.ClientWidth – Inset * 2;

CurrentFrame.Anchors := [akLeft, akRight, akTop, akBottom];

Caution

Delphi programmers may be used to doing something similar to
this, except with forms instead of frames. This will not work on
Linux, due to differences in the windowing model. You’ll have to
convert any form-in-form code to use frames.

Kylix is not Delphi

��������	

��
�
���

���������
�������
���
����

����
�

Controls

351351

Containers

At design-time, there’s a strong distinction between containers and other
controls. Containers are controls whose constructor adds csAcceptsControls
to the ControlStyle set.2 When you drop a control on a container, the form
designer sets the new control’s Parent to the container, and sets Top and Left
relative to the container. However, if you drop a control on a non-container,
you’ve just created a control that (partially) obscures another control. The
non-container doesn’t become the new control’s Parent.

This distinction is not enforced at run-time. If you create a control and
set its Parent to a non-container, the new control will appear on top of its
new Parent, and will be clipped to it. While this may be what you want in
some special cases, it’s generally a typo.

There are controls and then there are controls

Just as some components are not visual controls, so some controls are not
windowed controls. Where a TWidgetControl (also known as TWinControl,
to simplify porting of Delphi code) represents a Qt widget, and is thus a
screen window that can have child windows, a TGraphicControl is not. A
TGraphicControl exists only as a Kylix object that multiplexes Paint events
and translates mouse events into local coordinates. Because a TGraphicControl
does not have an underlying screen window, it has no Handle, cannot be the
Parent of another control, cannot receive keyboard focus—and it consumes
fewer system resources. Speed buttons and bevels are graphic controls.

Most controls, though, are widget controls. Just as every component has
a Components property that lists the components it owns, so every widget
control has a Controls array and a ControlCount property that lists all its
children. At run-time, the ControlCount contains the number of child controls
this control has, and the Control array contains a reference to each one,
indexed from 0 to ControlCount – 1. Again, most controls’ ControlCount is 0:
Only forms, frames, and containers like panels have child controls.

2. The ControlStyle set controls various aspects of a component’s design-time and run-
time behavior. You’ll never need to pay any real attention to it except when writing
components.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

352

Note

Be sure to note the difference between Controls and Components.
Every control on a form is in the form’s Components array, but only
those controls whose Parent is the form itself are in the form’s
Controls array. Conversely, controls on a container are in the
container’s Controls array but not in its Components array.

Figure 6-2. Eight components on this form

Figure 6-3. The Controls hierarchy

��������	

��
�
���

���������
�������
���
����

����
�

Controls

353353

For example, Figure 6-2 shows a small form from the ControlHierarchy
project in the ch6/Control project group. This form has two labels placed
directly on the form, and two panels, with two more labels each. All eight
components are owned by the form, and appear in the form’s Components
array. However, Panel1 is the Parent of Label3 and Label4, and they appear in
Panel1’s Controls array. Similarly, Panel2 is the Parent of Label4 and Label5,
and they appear in Panel2’s Controls array. (See Figure 6-3.)

You would write code that walks a Controls array if you needed to change or
examine only the controls in a particular container. For example, this function
from lib/QGrabBag.pas (see the RadioButtons project of the ch6/Controls
project group for a silly example) returns the Checked radio button on a
container control, if any.

function CheckedButton(Container: TWidgetControl): TRadioButton;

var

 Index: integer;

 Control: TControl;

begin

 for Index := 0 to Container.ControlCount - 1 do

 begin

 Control := Container.Controls[Index];

 if Control is TRadioButton then

 begin

 Result := TRadioButton(Control);

 if Result.Checked then EXIT;

 end;

 end;

 Result := Nil; // No Checked radio button on this Container

end; // CheckedButton

Mouse events

All controls can respond to mouse events. Usually, of course, you only care
about the standard response to mouse events—whether the button was
pushed, or the selection changed, and so on—but sometimes you care about
where on the control the button was pushed, which button was pushed,
whether any shift keys were held down, and so on. For example, you might
want to synthesize a shift-click event. Or a graphical editor for music notation,
org charts, or circuit diagrams would need to be able to know where on the
control the mouse was pressed, so it could translate that to a click on a par-
ticular piece of data.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

354

In either case, you would begin by handling the OnMouseDown event
for the graphical editor, which might be a TPaintBox. The OnMouseDown
events is a

TMouseEvent = procedure(Sender: TObject; Button: TMouseButton;

 Shift: TShiftState; X, Y: Integer) of object;

You’ll get this event on right clicks and middle clicks as well as left clicks, so
your first task is to check which Button is generating the event. If it’s the
button you want, you may or may not care to check the Shift state; some apps
distinguish between a shift-click and an unshifted-click, while others don’t.

To synthesize a left click, you’d just need to check Button and Shift. In the
graphical editor example, if the Button and the Shift tell you that this is the
event you care about, you also need to check the X and Y parameters to make
sure that the user clicked on a piece of data, not on white space. Fortunately,
the X and the Y parameters are both in client coordinates of the control
receiving the event, so you just have to walk a list of the data you’re drawing
on the screen, seeing if the click point is in any of its bounding boxes.

Note

If you do examine the Shift state, be sure to do so defensively: Write
tests like if ssShift in Shift rather than if Shift = [ssShift] or
if Shift = [ssShift, ssLeft]. While both Qt documentation and
the QControls.pas source code suggest that, eg, a left SHIFT+CLICK
should generate a MouseDown event with Shift = [ssShift,
ssLeft], what you actually get is just [ssShift]. The MouseUp
event gets the Shift = [ssShift, ssLeft]. This directly reflects the infor-
mation in X11 mouse button up and down events; it’s just a tad …
unfortunate … that it’s exactly the opposite of the way Delphi acts.
Note, though, that Kylix’s mouse events do act like Delphi’s in that
they do show “chording”. That is, if you hold down the left button
and press the right button, the OnMouseDown for the right button
press will show ssLeft in Shift.

Kylix is not Delphi

��������	

��
�
���

���������
�������
���
����

����
�

Controls

355355

Of course, a mouse down is only half of a click. The user also has to
release the mouse on the control she pressed it on, or it doesn’t count. This
poses a problem: Just as your control only gets a mouse down event when the
mouse pressed over the control, so it normally only gets a mouse up event
when the mouse is released over the control. The solution is “mouse capture”,
a request for all mouse events, until you release the capture.

If you’re writing a custom component, you can use the protected
MouseCapture property. When you set it to True, the control has mouse
capture until you set it False. This option is not available to you when you’re
writing an event handler, so you have to set Mouse.Capture to the control
you want to own the mouse. Whichever approach you take, be sure to free
the mouse when you’re done!

So, the following two schematic events are what you need to create your
own customized click events:

procedure TSynthesizer.ControlMouseDown(Sender: TObject; Button: TMouseButton;

 Shift: TShiftState; X, Y: Integer);

begin

 if ThisIsTheRightClick then

 Mouse.Capture := CapturingControl;

end; // TSynthesizer.ControlMouseDown

Tip

Kylix includes versions of the familiar Windows rectangle functions:
PtInRect, IntersectRect, UnionRect, IsRectEmpty, and OffsetRect.

Note

If you’re writing a custom component that wants to capture the
mouse on every mouse down event, your component’s constructor
can add csCaptureMouse to the component’s ControlStyle. This
automatically captures the mouse whenever it’s clicked on your
component, and automatically ‘sets the mouse free’ when the
button is released.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

356

procedure TSynthesizer.ControlMouseUp(Sender: TObject; Button: TMouseButton;

 Shift: TShiftState; X, Y: Integer);

begin

 if Mouse.Capture = CapturingControl then

 begin

 Mouse.Capture := Nil;

 if ThisIsTheRightRelease then

 SyntheticClickAction;

 end;

end; // TSynthesizer.ControlMouseUp

The ThisIsTheRightRelease test would check that the mouse cursor was
in the right rectangle. For a GUI editor, you’d need to check the bounding box
of the datum that was clicked on. For the simpler shift-click synthesis, you’d
just need to be sure that the click point is still in the control’s bounding box:
PtInRect(Rect(0, 0, Width, Height), Point(X, Y)).

Keyboard events

As with mouse events, you have a choice between ‘raw’ and ‘cooked’ key-
board events. Most controls have an OnKeyPress event, which gives you the
keypress info cooked to a standard ANSI character. The cooked character is
perfectly adequate for entering filenames, email, or program source, but if
you need to respond to non-character keys, like the cursor movement keys,
function keys, or combinations like SHIFT+CTRL+INSERT, you need to handle
the raw keyboard events, OnKeyDown and/or OnKeyUp.

Note

While the OnMouse events include the cursor position, the OnClick
event is a simple TNotifyEvent–procedure (Sender: TObject) of
object–that doesn’t include click location information. When you
need that, you can read the Mouse.CursorPos property. (See Chapter 7
for more information about the Mouse global.)

��������	

��
�
���

���������
�������
���
����

����
�

Controls

357357

Kylix is not Delphi

Any Delphi code that
uses Windows’ VK_ key
names will have to be
rewritten to use Qt’s
Key_ names.

These events pass you both a shift state map, Shift, and a numeric key
code, Key. For the standard Latin-1 characters (ie, #32 to #255), the Key code
is the Ord() of the character. (Alphabetic keystrokes are all implicitly uppercase.
That is, if the B key is pressed, Key will equal Ord('B'), or 66.) The keys that
produce Latin-1 characters are also named in Qt.pas, with the English
alphabet keys being Key_A through Key_Z and the ‘European’ alphabet keys
having longer names. See the sidebars on pages 358 and 361 for Key_ names
for punctuation and ‘European’ alphabet characters.

For keys like F1 through F12, the cursor keys, functions keys, pad, and
the other non-visual keys, you have to rely on the Key_ names. These are
summarized in the sidebar on page 359. Strangely, you can distinguish
between the two Enter keys, but you cannot distinguish between the left and
right Shift, Ctrl, or Alt keys, nor can you distinguish between ‘cursor pad’ and
‘number pad’ keys. (You can tweak your xmodmap settings a bit so that you can
distinguish these keys, but obviously you can’t rely on a user’s having a cus-
tomized /etc/X11/XModmap unless you’re selling turnkey systems.)

Note that the (English) alphabet keys are handled a bit differently than
non-alphabet keys. When you press the B key, you get a Key_B event, and
ssShift is not in Shift. When you hold down the shift key and press the B
key, you get a Key_Shift event, followed by a Key_B with ssShift in Shift.
That is, you get the same Key_ code for ‘b’ and ‘B’. However, when you press
the 6 key you get a Key_6 event, while SHIFT+6 gives you a Key_Shift event,
followed by a Key_AsciiCircum. That is, the key codes have been translated
to match the glyph’s on the user’s keyboard.

The KbdLookup project in the ch6/Controls project group will let you
explore these behaviors on your own.

KeyPreview

Keystrokes go to the control with keyboard focus. This means that, by default,
form-wide keyboard event handlers will never fire. If you set the form’s
KeyPreview property to True, the form will ‘see’ keyboard events before the
event with the keyboard focus.

Setting the Key code to 0 suppresses further processing. If you do this in
an OnKeyDown handler, for example, you’ll still get an OnKeyUp event when
the key is released, but you will not get an OnKeyPress.

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

358

..

Table 6-1. ASCII punctuation and Key_ codes

Glyph Decimal Hex Key_ code

32 20 Key_Space, KeyAny

! 33 21 Key_Exclam

" 34 22 Key_QuoteDbl

35 23 Key_NumberSign

$ 36 24 Key_Dollar

% 37 25 Key_Percent

& 38 26 Key_Ampersand

' 39 27 Key_Apostrophe

(40 28 Key_ParenLeft

) 41 29 Key_ParenRight

* 42 2A Key_Asterisk

+ 43 2B Key_Plus

, 44 2C Key_Comma

- 45 2D Key_Minus

. 46 2E Key_Period

/ 47 2F Key_Slash

: 58 3A Key_Colon

; 59 3B Key_Semicolon

< 60 3C Key_Less

= 61 3D Key_Equal

> 62 3E Key_Greater

? 63 3F Key_Question

@ 64 40 Key_At

[91 5B Key_BracketLeft

\ 92 5C Key_Backslash

] 93 5D Key_BracketRight

��������	

��
�
���

���������
�������
���
����

����
�

Controls

359359

..

^ 94 5E Key_AsciiCircum

_ 95 5F Key_Underscore

` 96 60 Key_QuoteLeft

{ 123 7B Key_BraceLeft

| 124 7C Key_Bar

} 125 7D Key_BraceRight

~ 126 7E Key_AsciiTilde

Table 6-2. Non-visible characters and Key_ codes

Key_ code Produced by

Key_Escape Esc

Key_Tab Tab

Key_Backtab Shift+Tab

Key_Backspace Backspace

Key_Return 'Normal' Enter

Key_Enter Number pad Enter

Key_Insert Insert

Key_Delete Delete

Key_Pause Pause / Break

Key_Print Print Screen / SysRq

Key_SysReq ?

Key_Home Home

Key_End End

Key_Left 'Inverted T' left

Key_Up 'Inverted T' up

Key_Right 'Inverted T' right

Table 6-1. ASCII punctuation and Key_ codes (Continued)

Glyph Decimal Hex Key_ code

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

360

Notes:

1. Keys “Produced by” ? are not produced on a standard US 104-key
keyboard with a standard Redhat 7.0 /etc/X11/Xmodmap. Other distri-
butions may differ.

Key_Down 'Inverted T' down

Key_Prior PgUp

Key_PageUp PgUp

Key_Next PgDn

Key_PageDown PgDn

Key_Shift Right or left Shift

Key_Control Right or left Ctrl

Key_Meta Shift then Alt, but not Alt then Shift. On some–but not

all–distributions, the Windows key produces Key_Meta.

Key_Alt Right or left Alt

Key_CapsLock Caps Lock

Key_NumLock Num Lock

Key_ScrollLock Scroll Lock

Key_F1 F1 (etc)

Key_Super_L ?

Key_Super_R ?

Key_Menu ?

Key_Hyper_L ?

Key_Hyper_R ?

Key_Help ?

Key_unknown Number pad 5

Table 6-2. Non-visible characters and Key_ codes (Continued)

Key_ code Produced by

��������	

��
�
���

���������
�������
���
����

����
�

Controls

361361

2. Though you can distinguish between the two Enter keys, you can-
not reliably distinguish between the left and right Shift, Ctrl, or Alt
keys, nor can you distinguish between ‘cursor pad’ and ‘number
pad’ keys. This depends on xmodmap, and varies from system to system
and from distribution to distribution.

3. Under Gnome, at least, the three Windows keys come through as
Key code 0 by default. I edited my /etc/X11/Xmodmap so I could assign
the three Windows keys to Gnome events: Don’t expect to be able to
detect these keys.

..

Table 6-3. Latin-1 ‘European’ characters and Key_ codes

Description Glyph Decimal Hex HTML
name

Key_ code

Non-breaking

space

160 A0 nbsp Key_nobreakspace

Inverted

exclamation

mark

¡ 161 A1 iexcl Key_exclamdown

Cent sign ¢ 162 A2 cent Key_cent

Pound sign £ 163 A3 pound Key_sterling

Currency sign ¤ 164 A4 curren Key_currency

Yen sign ¥ 165 A5 yen Key_yen

Broken vertical

bar

¦ 166 A6 brvbar Key_brokenbar

Section sign § 167 A7 sect Key_section

Spacing diaresis ¨ 168 A8 uml Key_diaeresis

Copyright sign © 169 A9 copy Key_copyright

Feminine

ordinal

indicator

ª 170 AA ordf Key_ordfeminine

Angle quotation

mark, left

« 171 AB laquo Key_guillemotleft

Negation sign ¬ 172 AC not Key_notsign

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

362

Soft hyphen - 173 AD shy Key_hyphen

Circled R

registered sign

® 174 AE reg Key_registered

Spacing macron ¯ 175 AF hibar Key_macron

Degree sign ° 176 B0 deg Key_degree

Plus-or-minus

sign

± 177 B1 plusmn Key_plusminus

Superscript 2 ² 178 B2 sup2 Key_twosuperior

Superscript 3 ³ 179 B3 sup3 Key_threesuperior

Spacing acute ´ 180 B4 acute Key_acute

Micro sign µ 181 B5 micro Key_mu

Paragraph sign ¶ 182 B6 para Key_paragraph

Middle dot · 183 B7 middot Key_periodcentered

Spacing cedilla ¸ 184 B8 cedil Key_cedilla

Superscript 1 ¹ 185 B9 sup1 Key_onesuperior

Masculine

ordinal

indicator

º 186 BA ordm Key_masculine

Angle quotation

mark, right

» 187 BB raquo Key_guillemotright

Fraction 1/4 ¼ 188 BC frac14 Key_onequarter

Fraction 1/2 ½ 189 BD frac12 Key_onehalf

Fraction 3/4 ¾ 190 BE frac34 Key_threequarters

Inverted

question mark

¿ 191 BF iquest Key_questiondown

Capital A, grave

accent

À 192 C0 Agrave Key_Agrave

Capital A, acute

accent

Á 193 C1 Aacute Key_Aacute

Table 6-3. Latin-1 ‘European’ characters and Key_ codes (Continued)

Description Glyph Decimal Hex HTML
name

Key_ code

��������	

��
�
���

���������
�������
���
����

����
�

Controls

363363

Capital A,

circumflex

accent

Â 194 C2 Acirc Key_Acircumflex

Capital A, tilde Ã 195 C3 Atilde Key_Atilde

Capital A,

dieresis or

umlaut mark

Ä 196 C4 Auml Key_Adiaeresis

Capital A, ring Å 197 C5 Aring Key_Aring

Capital AE

diphthong

(ligature)

Æ 198 C6 AElig Key_AE

Capital C,

cedilla

Ç 199 C7 Ccedil Key_Ccedilla

Capital E, grave

accent

È 200 C8 Egrave Key_Egrave

Capital E, acute

accent

É 201 C9 Eacute Key_Eacute

Capital E,

circumflex

accent

Ê 202 CA Ecirc Key_Ecircumflex

Capital E,

dieresis or

umlaut mark

Ë 203 CB Euml Key_Ediaeresis

Capital I, grave

accent

Ì 204 CC Igrave Key_Igrave

Capital I, acute

accent

Í 205 CD Iacute Key_Iacute

Capital I,

circumflex

accent

Î 206 CE Icirc Key_Icircumflex

Capital I,

dieresis or

umlaut mark

Ï 207 CF Iuml Key_Idiaeresis

Table 6-3. Latin-1 ‘European’ characters and Key_ codes (Continued)

Description Glyph Decimal Hex HTML
name

Key_ code

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

364

Capital Eth,

Icelandic

Ð 208 D0 ETH Key_ETH

Capital N, tilde Ñ 209 D1 Ntilde Key_Ntilde

Capital O, grave

accent

Ò 210 D2 Ograve Key_Ograve

Capital O, acute

accent

Ó 211 D3 Oacute Key_Oacute

Capital O,

circumflex

accent

Ô 212 D4 Ocirc Key_Ocircumflex

Capital O, tilde Õ 213 D5 Otilde Key_Otilde

Capital O,

dieresis or

umlaut mark

Ö 214 D6 Ouml Key_Odiaeresis

Multiplication × 215 D7 Key_multiply

Capital O, slash Ø 216 D8 Oslash Key_Ooblique

Capital U, grave

accent

Ù 217 D9 Ugrave Key_Ugrave

Capital U, acute

accent

Ú 218 DA Uacute Key_Uacute

Capital U,

circumflex

accent

Û 219 DB Ucirc Key_Ucircumflex

Capital U,

dieresis or

umlaut mark

Ü 220 DC Uuml Key_Udiaeresis

Capital Y, acute

accent

Ý 221 DD Yacute Key_Yacute

Capital THORN,

Icelandic

Þ 222 DE THORN Key_THORN

Table 6-3. Latin-1 ‘European’ characters and Key_ codes (Continued)

Description Glyph Decimal Hex HTML
name

Key_ code

��������	

��
�
���

���������
�������
���
����

����
�

Controls

365365

Small sharp s,

German (sz

ligature)

ß 223 DF szlig Key_ssharp

Small a, grave

accent

à 224 E0 agrave Key_agrave_lower

Small a, acute

accent

á 225 E1 aacute Key_aacute_lower

Small a,

circumflex

accent

â 226 E2 acirc Key_acircumflex_lower

Small a, tilde ã 227 E3 atilde Key_atilde_lower

Small a, dieresis

or accent

ä 228 E4 auml Key_adiaeresis_lower

Small a, ring å 229 E5 aring Key_aring_lower

Small ae

diphthong

(ligature)

æ 230 E6 aelig Key_ae_lower

Small c, cedilla ç 231 E7 ccedil Key_ccedilla_lower

Small e, grave

accent

è 232 E8 egrave Key_egrave_lower

(grave_lower)

Small e, acute

accent

é 233 E9 eacute Key_eacute_lower

(acute_lower)

Small e,

circumflex

(ligature)

ê 234 EA ecirc Key_ecircumflex_lower

(circumflex_lower)

Small e, dieresis

or umlaut mark

ë 235 EB euml Key_ediaeresis_lower

(diaeresis_lower)

Small i, grave

accent

ì 236 EC igrave Key_igrave_lower

Small i, acute

accent

í 237 ED iacute Key_iacute_lower

Table 6-3. Latin-1 ‘European’ characters and Key_ codes (Continued)

Description Glyph Decimal Hex HTML
name

Key_ code

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

366

Small i,

circumflex

umlaut mark

î 238 EE icirc Key_icircumflex_lower

Small i, dieresis

or umlaut mark

ï 239 EF iuml Key_idiaeresis_lower

Small eth,

Icelandic

ð 240 F0 eth th_lower

Small n, tilde ñ 241 F1 ntilde Key_ntilde_lower

Small o, grave

accent

ò 242 F2 ograve Key_ograve_lower

Small o, acute

accent

ó 243 F3 oacute Key_oacute_lower

Small o,

circumflex

umlaut mark

ô 244 F4 ocirc Key_ocircumflex_lower

Small o, tilde õ 245 F5 otilde Key_otilde_lower

Small o, dieresis

or

umlaut mark

ö 246 F6 ouml Key_odiaeresis_lower

Division ÷ 247 F7 Key_division

Small o, slash ø 248 F8 oslash Key_oslash

Small u, grave

accent

ù 249 F9 ugrave Key_ugrave_lower

Small u, acute

accent

ú 250 FA uacute Key_uacute_lower

Small u,

circumflex

accent

û 251 FB ucirc Key_ucircumflex_lower

Small u, dieresis

or

umlaut mark

ü 252 FC uuml Key_udiaeresis_lower

Table 6-3. Latin-1 ‘European’ characters and Key_ codes (Continued)

Description Glyph Decimal Hex HTML
name

Key_ code

��������	

��
�
���

���������
�������
���
����

����
�

Controls

367367

..

Owner draw

Some controls have events that let you draw them—or parts of them—yourself.
These “owner draw” controls include list and combo boxes, string and draw
grids, tab and page controls, and list, icon, and tree views. All of these except
the draw grid can draw themselves; owner draw is an override, for when you
want to add a state graphic or custom font.

The date picker component of Chapter 9 uses an owner draw grid for a
calendar. The OwnerDraw project in the ch6/Controls project group (Figure 6-4)
is a simpler example, with an owner draw dropdown that uses each font
name as an example of itself. If you run that program, you’ll see that it’s
actually a rather bad example—rendering each font means that the dropdown
is very slow—but it’s a simple example, as I don’t have to obscure the logic
with any bogus state generation. The key routine is this FontsDrawItem
event handler, which draws each font name in itself.

Small y, acute

accent

ý 253 FD yacute Key_yacute_lower

Small thorn,

Icelandic

þ 254 FE thorn Key_thorn_lower

Small y, dieresis

or

umlaut mark

ÿ 255 FF yuml Key_ydiaeresis

Table 6-3. Latin-1 ‘European’ characters and Key_ codes (Continued)

Description Glyph Decimal Hex HTML
name

Key_ code

Note

The key codes for the characters from 232 to 235 (‘decorated’ lower
case e’s) are declared in Qt.pas without the leading Key_e. Eg, 232 is
declared as grave_lower, not Key_egrave_lower. This may be fixed
in later releases, or in a patch to release 1.

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

368

procedure TOwnerDrawFrm.FontsDrawItem(Sender: TObject; Index: Integer;

 Rect: TRect; State: TOwnerDrawState; var Handled: Boolean);

var

 Dropdown: TComboBox;

 ThisFont: string;

begin

 Assert(Sender is TComboBox);

 Dropdown := TComboBox(Sender);

 with Dropdown.Canvas do

 begin

 ThisFont := Dropdown.Items[Index];

 Font.Name := ThisFont;

 TextRect(Rect, Rect.Left + 1, Rect.Top + 1, ThisFont);

 end;

 Handled := True;

end; // TOwnerDrawFrm.FontsDrawItem

This should seem pretty straightforward.3 First, I check that the Sender is
indeed a TComboBox, and cast the Sender to a TComboBox. Then, I ‘open’
DropDown.Canvas (see the Canvas section of this chapter, below) with a with
statement. The Index parameter tells me which item in the combo box’s Items
list I need to draw (see Chapter 7 for a discussion of Items’ TStrings class), so I
make a local copy of the string to avoid having to index Dropdown.Items twice.
Font.Name := ThisFont sets DropDown.Canvas.Font to the current font—that’s

3. It’s sure lucky I don’t have to pay royalties on the phrase “pretty straightforward”, isn’t it?

Figure 6-4. An owner draw dropdown

��������	

��
�
���

���������
�������
���
����

����
�

Controls

369369

all I need to do to change fonts. Then, I call TextRect to draw the font name
string, clipped to the Rect that was passed in. Note that this Rect is in the
Sender’s coordinates, not form or screen coordinates.

Owner draw vs application styles

Owner draw relies on the form’s event handlers to do the custom drawing.
While you can easily have two or more controls on the same form share an
event handler, sharing event handler code across forms is more cumbersome.
You can push the code into a routine that’s called by different event handlers.
Or, you can try risky tricks like setting the event handler for a control on this
form to an event handler on that form in this form’s OnCreate handler. Basically,
though, owner draw controls are best restricted to displaying custom data.

If you want to give your application a distinctive look and change the
way all buttons or all list boxes look, you should use Application.Style. See
the Application section of Chapter 7.

Drag and drop

Kylix makes it easy for you to add drag and drop to your applications. All
controls4 have a DragMode property and four drag events: OnStartDrag,
OnDragOver, OnDragDrop, and OnEndDrag. Normally, DragMode is
dmManual, which means that you have to initiate drag and drop activity by
calling BeginDrag, typically in an OnMouseDown handler. If you set DragMode
to dmAutomatic, StartDrag is called automatically whenever the user drags
the mouse more than Mouse.DragThreshold pixels from the click point.

OnDragOver

Once you start dragging a control, the two key events are OnDragOver and
OnDragDrop. OnDragOver is called often as you drag a control over a form or
over other controls. OnDragOver is called when the cursor enters a control’s
bounding box; when the cursor leaves a control’s bounding box; and whenever
the cursor moves about inside of a control’s bounding box. The point of the
OnDragOver event is setting its Accept parameter to True or False. If you drag
a control over a control that doesn’t have an OnDragOver event handler, or if

4. Well, “almost all”. TBevel, for instance, doesn’t have a DragMode property and
drag events.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

370

that handler sets Accept to False, the cursor will (by default—you can set
your own cursors) be a slashed circle: You can’t drop here. (See Figure 6-5.) If
the OnDragOver event handler sets Accept to True, the cursor will (again,
only by default) be a normal drag cursor. (See Figure 6-6.)

The OnDragOver event handler has, as usual, a Sender parameter. It also
has a Source parameter, which is also a TObject. The Sender is, as usual, the
control that’s sending the event, the one the event handler belongs to. In
other words, the Sender is the control that’s being dragged over. The Sender
is being asked whether or not to Accept the control that’s being dragged over
it, the Source.

Real apps might have relatively complex tests to determine which con-
trols they’ll accept and where, but the DragAndDrop project of the ch6/
Controls project group is very simplistic. It will Accept anytime Sender <>
Source. (If it blindly sets Accept to True, it could end up trying to drop a
control onto itself.)

Figure 6-5. Can’t drop here

��������	

��
�
�!�

���������
�������
���
����

����
�

Controls

371371

procedure TDragDropDemoFrm.VeryAccepting(Sender, Source: TObject; X, Y: Integer;

 State: TDragState; var Accept: Boolean);

begin

 Accept := Sender <> Source;

end; // TDragDropDemoFrm.VeryAccepting

If you run the DragAndDrop project, you’ll see that you can drag all three
labels, but that you can’t drop onto the ‘No Fly Zone’ with the raised wall
around it. That’s because the form and the DropIn label share the above
VeryAccepting OnDragOver event handler, but the NoFlyZone label does not
have an OnDragOver event handler.

OnDragDrop

When the user drops a control over a control that will accept it, the receiving
control gets an OnDragDrop event. If it doesn’t handle this event, nothing will
happen except that the cursor changes back to normal. Kylix mediates a pro-
tocol for you, but it’s up to you to make anything happen. In the OnDragDrop
event, as in the OnDragOver event, the Sender is the control whose event
handler is being fired, the drop target, while Source is the control that’s being

Figure 6-6. Can drop here

��������	

��
�
�!�

���������
�������
���
����

����
�

Chapter 6 Visual objects

372

dropped, and X and Y are the drop location in Sender’s coordinates. Thus,
the DragAndDrop project moves controls where you drop them:

procedure TDragDropDemoFrm.ReparentOnDrop(Sender, Source: TObject;

 X, Y: Integer);

begin

 Assert(Sender is TWidgetControl, 'Sender is ' + Sender.ClassName);

 Assert(Source is TControl, 'Source is ' + Source.ClassName);

 with TControl(Source) do

 begin

 Parent := TWidgetControl(Sender);

 Left := X;

 Top := Y;

 end;

end; // TDragDropDemoFrm.ReparentOnDrop

If you run the project, you’ll see that you can drop the DragMe label onto
the DropIn label; if you then drag the DropIn label, the DragMe label will move
with it. If you drag the DragMe label off the DropIn label, it will no longer
move with the DropIn label.

Of course, a real project would typically have a more complicated
OnDragDrop event handler than this one. For example, you don’t have to use
drag and drop to move controls; you might drag and drop the ‘contents’ of
one control into another, or you might use drag and drop to let users reorder
a list.

TDragObject

The default drag cursor isn’t very enlightening. It doesn’t show what you’re
dragging, and it doesn’t show where the cursor is in relationship to the object
you’re dragging. The OnStartDrag event lets you create a TDragObject
descendant that can help with this. If you don’t set the event handler’s
DragObject parameter, Kylix will automatically create a TDragObject for you
that produces the default cursor &c. However, if you create a customized
descendant of TDragObject and assign it to the DragObject parameter, you
can specify the image that’s being dragged as well as its “hot spot”, which is
the point in image coordinates that should be under the cursor as it’s
dragged. This lets you both tailor the drag image to what’s being dragged,
and to give some indication of where it will be placed when dropped. If you
create a TDragObject, be sure to Free it in an OnEndDrag event handler.

��������	

��
�
�!�

���������
�������
���
����

����
�

Controls

373373

The DragAndDrop project sets DragObject for the DragMe label, but not for
either of the two bordered labels. This is why dragging DragMe shows the text
being dragged, but dragging the other labels just shows the default drag cursor.

The DragMe label’s OnStartDrag handler creates a specialized descendant
of TDragControlObject, which is what you’d typically use for simply dragging
a whole control. When you use a TDragControlObject, the Source param-
eters of the OnDragDrop and OnDragOver events are the control you’re
dragging, just as if you hadn’t set a DragObject. If you use a drag object that
descends directly from TDragObject, the Source parameter is the TDragObject
itself, which is a bit more complicated but can simplify things when several
different controls might be drag sources. They’d all create the same type of
DragObject, which the OnDragDrop and OnDragOver events would know
what to do with.

The TextDragObject I create in the DragAndDrop project doesn’t do
anything so subtle, but it does illustrate how to create a custom drag cursor.
The constructor saves the Source label’s Caption in a Text field, and the
GetDragImageIndex method adds an image to the global DragImageList
and returns the index of the new image.

function TextDragObject.GetDragImageIndex: Integer;

var

 Bitmap: TBitmap;

begin

 Bitmap := TBitmap.Create;

 try

 with DragImageList do

 begin

 Bitmap.Height := Height; // just so we have Canvas &c

 Bitmap.Width := Width;

 Width := Max(Width, Bitmap.Canvas.TextWidth(Text));

 Height := Max(Height, Bitmap.Canvas.TextHeight(Text));

 // The Max() fn is in the Math unit

 Bitmap.Height := Height;

 Bitmap.Width := Width;

 Bitmap.Canvas.TextOut(0, 0, Text);

 Result := DragImageList.Add(Bitmap, Nil);

 ImageIndex := Result;

 end;

 finally

 Bitmap.Free;

 end;

end; // TextDragObject.GetDragImageIndex

��������	

��
�
�!�

���������
�������
���
����

����
�

Chapter 6 Visual objects

374

This function is a bit longer than some of the others I’ve presented so far,
but it should be obvious enough. I create a TBitmap (see below) to draw on,
because we can Add a bitmap to an image list, or Replace an existing one, but
we can’t directly modify an image in an image list. I set the new bitmap’s
Height and Width to the image list’s current Height and Width, so that I have
a valid Canvas which can calculate TextHeight and TextWidth. I resize the
global drag image list so it will fit the text image I want to Add to it, then draw
text on the bitmap with TextOut. I then Add the bitmap, which gives me the
image index I need to return, and save that index in a field of the TextDragObject
so that I can remove it from the global drag image list in the TextDragObject’s
destructor. Once I’ve added the bitmap to the image list, I no longer need the
bitmap, so I Free the bitmap, and return.

In the OnStartDrag handler, I create the TextDragObject and assign it to
the DragObject parameter. Kylix will not automatically Free a DragObject
that we explicitly Create, so I save a reference to the DragObject in a field of
the form object, and Free it in the OnEndDrag event handler.

procedure TDragDropDemoFrm.StartTextDrag(Sender: TObject;

 var DragObject: TDragObject);

begin

 Assert(Sender is TLabel);

 DragObject := TextDragObject.Create(TLabel(Sender),

 TLabel(Sender).Caption);

 fDragObject := DragObject; // 'cause Kylix doesn't Free it by itself

end; // TDragDropDemoFrm.StartTextDrag

procedure TDragDropDemoFrm.EndTextDrag(Sender, Target: TObject; X,

 Y: Integer);

begin

 FreeAndNil(fDragObject);

end; // TDragDropDemoFrm.EndTextDrag

Canvas

I’ve used a Canvas a few times now, and it should be obvious what’s going on:
A Canvas is a drawing surface. Forms have a Canvas property, as do bitmaps
and all controls with owner-draw abilities. Container controls typically don’t
have a Canvas property, but you can drop a PaintBox component (from the
Additional tab) onto a container if you need to draw on it.

��������	

��
�
�!�

���������
�������
���
����

����
�

Canvas

375375

Canvases have three basic drawing tools—a pen, a brush, and a font—
and a variety of basic two-dimensional graphics primitives.

Drawing tools

Designers of graphics primitives have two basic choices: They can fully
parameterize every call, so that drawing a line requires you to specify color
and line style along with end points, or they can use a concept of “drawing
tools”, so that before you can draw a line you have to setup the tools, but then
you only have to specify a pair of end points. The fully parameterized
approach makes for fewer system calls, at the expense of each call being
more complex. The drawing tools approach requires system calls to con-
figure the tools, but each call is simpler—and faster overall, as often you will
draw several items using the same border, interior, or font.

Kylix’s Canvas takes the drawing tools approach. Primitives that draw a
line or outline a region use the Canvas’ Pen, which has Color, Width, and a
couple of drawing mode properties. Primitives that fill a region use the
Canvas’s Brush, which has Color, Bitmap, and Style properties. Primitives
that draw text use the Canvas’ Font, which has the same font Name, Color,
Size, and Style properties that you’ve seen already.

..

Drawing tools Assign() on assignment

A Canvas’ Pen, Brush, and Font tools are all objects in their own right. This
means that when you want to set a Canvas’s properties, you can set the
various tools’ properties one by one, or you can simply write code like
ThisCanvas.Pen := ThatPen to change all the Canvas’ Pen’s properties to
match ThatPen’s.

Does this look dangerous to you? Like you’ve changed ThisCanvas’s Pen
property to point to a new object, without freeing the old one? Or that
ThatPen might now have two ‘owners’ who might think that they ought to
Free it?

Note

Paint boxes and other graphic controls are drawn before—or, visually
underneath—windowed controls like labels and buttons.

��������	

��
�
�!�

���������
�������
���
����

����
�

Chapter 6 Visual objects

376

Good.

The assignment is safe, though, because CLX objects that expose drawing
tool objects do so via write methods like

procedure TCanvas.SetPen(const Value: TPen);

begin

 FPen.Assign(Value);

end;

TFont, TPen, and TBrush all descend from TGraphicsObject, which in
turn descends directly from TPersistent (see Chapter 7). This lets them
stream in from a form resource; it also gives them an Assign() method. The
default Assign() implementation in TPersistent just raises an exception, but
descendants override it to make themselves functionally identical to the
object they’re Assign()ed. Thus, when you say ThisCanvas.Pen := ThatPen,
pointer(ThisCanvas.Pen) does not change; rather, the Canvas’s Pen object
copies ThatPen’s Color, Mode, Style, and Width properties.

You can—and should—use this technique in your own objects that
expose object properties.

property Pen: TPen read fPen write fPen;

can lead to memory leaks and/or crashes, while

property Pen: TPen read fPen write SetPen;

..

where SetPen does an Assign(), is safe and convenient.

Pen

You can set a Pen’s Color to a TColor. There are many named colors (available in
the Object Inspector’s dropdown for a Color property) which can be grouped
broadly into “absolute” colors like clRed, clBlue, and clBlack, and “functional”
colors like clButton, clShadow, and clBase. In addition to these named colors,
you can use any 32-bit integer from 0 to $00FFFFFF as a RGB value. The
standard function ColorToRGB will convert a named TColor to its RGB values.

 Kylix’s RGB encoding is “little endian”—the low (or first) byte is the Red
component, the second byte is the Green component and the third byte is the
Blue component—and thus the reverse of HTML’s more hexadecimal friendly
RRGGBB. The following functions from my lib/QGrabBag may be useful:

��������	

��
�
�!�

���������
�������
���
����

����
�

Canvas

377377

function RGB(Red, Green, Blue: integer): TColor;

const

 Mask = $000000FF; // Mask off all but low-byte

begin

 Result := Red and Mask or

 Green and Mask shl 8 or

 Blue and Mask shl 16 ;

end; // RGB

function TColorToHtml(Color: TColor): string;

begin

 Result := IntToHex(Color and $00FF0000 shr 16 or

 Color and $0000FF00 or

 Color and $000000FF shl 16, 6);

end; // TColorToHtml

function HtmlToTColor(const Color: string): TColor;

begin

 Result := StrToInt('$' + Color);

 Result := Result and $00FF0000 shr 16 or

 Result and $0000FF00 or

 Result and $000000FF shl 16 ;

end; // HtmlToTColor

It should be obvious what these functions do. I’ll only make two quick
notes. First, these functions rely on the rather dubious Object Pascal operator
precedence (Chapter 2) notion that “bitwise and” and the shift operators are
“multipliers” and so have a higher precedence than “bitwise or”, which is an
“adder”. Some people would prefer to use parentheses to make the order of
execution explicit. Second, the HtmlToTColor function converts a hexa-
decimal string to an integer by prepending a ‘$’ character—thus making it
look like a hexadecimal constant in Object Pascal source—and calling Str-
ToInt. The lower-level Val() procedure also supports this ‘$’ notation.

��������	

��
�
�!!

���������
�������
���
����

����
�

Chapter 6 Visual objects

378

You can find the Qt
documentation at
www.trolltech.com.

The Pens project in the ch6/Canvas project group (Figure 6-7) illustrates
color encoding, as well as the Width and Style properties. The Width of a pen
is measured in pixels, except that a Width of 0 is special. The Qt documentation
says a line width of 0 “draws a 1-pixel line very fast, but with lower precision
than with a line width of 1. Setting the line width to 1 or more draws lines that
are precise, but drawing is slower.” This obviously won’t affect horizontal or
vertical lines, but it does affect diagonal lines (as you can see from the Pens
project) and ellipses. I’m not sure that I would characterize the Width = 1
behavior as more “precise” so much as “heavier” —it seems to be drawing
pairs of points near places where the Breshenham algorithm’s error term is
about to roll over—but I guess it doesn’t really matter what you call it, so long
as you know that the difference exists.

The Style property lets you draw dashed and dotted lines. This is of rela-
tively little utility, except for drawing selection “marquees”. Most of the time,
you will use either psSolid or psClear. Note that when you draw with a
psClear Pen, your drawings have no outline, and the Brush is used to paint
the whole region; normally, the Brush is only used for the interior.

The Mode property controls how the Pen color interacts with the current
screen color. This lets you “undraw” black lines by redrawing them with a
pmXor Mode. Combining other colors is considerably more complicated: If
you need to do this, you’re on your own.

Figure 6-7. The Pens project

��������	

��
�
�!�

���������
�������
���
����

����
�

Canvas

379379

Brush

Any time you use a graphics primitive that draws a region with an interior,
the Brush is involved. A Brush has a Color, which can be any named TColor
or RGB integer, just like a Pen’s Color. A Brush’s Style controls how the Color
is used to fill the region. A Brush can also have a bitmap, which overrides the
Color; a Brush with a non-Nil Bitmap pays no attention to its Color or Style
properties.

The Ellipses program in the ch6/Canvas project group is an almost cool
demonstration of bitmapped brushes. It loads all the .bmp, .png, or .jpg files
in /usr/share/pixmaps/backgrounds/tiles—or any directories you list on the
command line—and draws random ellipses, each filled with a random
bitmap. As you can see if you run it, small, low-color Brush.Bitmap’s are
faster than big, high-color ones.

The Brushes program in the ch6/Canvas project group (Figure 6-8) is a
more comprehensive demo of the interactions of various Brush Style’s,
Color’s, and Bitmap’s. There are several things worth noting in its code. In the
OnPaint event handler,

// Solid Blue

Color := clBlue;

PaintRect(SolidBlue);

// Clear

Style := bsClear;

PaintRect(Clear);

// Bitmap

Bitmap := BrushBitmap.Picture.Bitmap;

PaintRect(Bitmapped);

note that a Style of bsClear supercedes the Color. The interior of the Clear
rectangle is left untouched, despite the fact that Brush.Color is still clBlue.

Note

Delphi programmers should be sure to note that the CLX’s
Brush.Bitmap is considerably more useful than the VCL’s: Window’s
brushes only use the top-left 8x8 pixels of their bitmap, while Qt’s
brushes use the whole bitmap.

Kylix is not Delphi

��������	

��
�
�!�

���������
�������
���
����

����
�

Chapter 6 Visual objects

380

Similarly, the Bitmap supercedes the Color and Style; the interior of the
Bitmapped rectangle is filled with the ‘paper’ bitmap, despite the fact that
Brush.Color is still clBlue and the Brush.Style is still bsClear.

In the DenseX code, note how the TBrushStyle’s that are neither bsSolid
nor bsClear blend the two behaviors. The patterned brushes draw some of
the pixels in the interior in the current Brush.Color, while leaving others
untouched. Thus, I draw the DenseSpectrum rectangle as a (coarse!) gradient
from white to blue by drawing the interior of the rectangle in solid blue, then
overlaying it with progressively less dense white.

// DenseSpectrum

Bitmap := Nil;

Style := bsSolid;

Color := clBlue;

Top := DenseSpectrum.Top + DenseSpectrum.Height + 8;

Bottom := Top + RectHeight;

Figure 6-8. The Brushes project

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

381381

Width := (Right - Left - 2) div 7;

Rectangle(Left, Top, Right, Bottom);

Pen.Style := psClear;

Color := clWhite;

for Index := 0 to 6 do

begin

 Style := TBrushStyle(ord(bsDense1) + Index);

 Rectangle(Left + Width * Index + 1, Top + 1,

 Left + Width * (Index + 1) + 1, Bottom – 1);

end;

Note also that the psClear Pen.Style for the interior rectangles draws no
outline, and fills the whole rectangle with the brush. This is why the second
Rectangle() call in the above snippet—the one that draws the white DenseX
interiors—uses Top + and Bottom – 1. If it didn’t, it would overwrite the rect-
angle’s black frame.

Finally, perhaps the coolest part of this little demo program is the
“Canvas-aligned bitmapped brush” at the bottom, which uses a bitmap I
build in the form’s OnCreate handler. Because the Brush’s Bitmap is Canvas-
aligned—ie, implicitly tiled over the whole Canvas, with its top-left corner at
the top-left of the Canvas—I didn’t have to reset the Brush between polygons
to draw the slashed ‘windows’ ‘onto’ the bitmap: I just drew a dozen
polygons, all using the same Brush.

for Index := 0 to 11 do

 Polygon([Point(Left + Width * Index + Width div 2, Top),

 Point(Left + Width * (Index + 1), Top),

 Point(Left + Width * Index + Width div 2, Bottom),

 Point(Left + Width * Index, Bottom)]);

Of course, this Canvas-alignment is a bit of a double-edged sword. You
might well want the top-left edge of the bitmap to be in the top-left corner of
the area you’re filling. For example, the Brushes project had a bug at first: the
gradient color bar was drawing a solid blue bar at the far right. I was building
a bitmap exactly as wide as the rectangle, and since it was tiled from the top-
left of the Canvas, I was losing the leftmost pixels of the gradient, and getting
them on the right.

For this simplistic demo, I just made the bitmap a bit wider, and left the
leftmost pixels undefined. More generally, you might want to use a PaintBox
to get a new Canvas, whose top-left is just where you want the top-left of the
bitmap to be.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

382

Alternatively, you can use the Qt function QPainter::setBrushOrigin to
control where the top-left corner of the bitmap is placed. For example, the
Brushes project actually builds two bitmaps, and calls

QPainter_setBrushOrigin(Canvas.Handle, Left, 0);

so that it doesn’t have to have Left unused pixels in the second bitmap.

Font

When you draw text on a Canvas, you use the Canvas’s current Font. A Font
has four key properties—Name, Color, Size, and Style—and four minor prop-
erties—CharSet, Pitch, Height, and Weight. Unfortunately, the Font object
doesn’t include any methods or properties that can tell you if a given font is a
nice, high-quality scalable font or some crufty old bitmapped X font that
hasn’t looked good since someone built it by hand at MIT in 1985—see the
“TFont vs QFont” sidebar for more information on how to do this with Qt calls.

..

TFont vs QFont

Linux programmers are used to it, but Windows programmers are in for a
real shock: Linux font handling is pretty poor. Under Windows, you can
easily5 tell if a font will scale smoothly. If it’s a True Type font, it scales
smoothly. If it’s a bitmapped font, it scales poorly. You can easily tell if a
font is a True Type font; you can choose to only ‘see’ True Type fonts. Not
under Linux!

The Fonts project in the ch6/Canvas group illustrates some of the difficul-
ties, as well as some lib/QGrabBag code that you can use to access the Qt
QFontInfo and QFontDatabase classes.

When you set a TFont’s properties, Qt tries to find the exact match for the
Name, CharSet, Pitch, Size and so on. If it can’t find an exact match, it will
give you the best match it can come up with. This might not be a very good
match! (This is true under Windows, too, but not only does Windows gen-
erally do a better matching job than X, most developers limit their expo-
sure to this issue by specifying only the standard fonts that are found in all
Windows versions. There are no standard fonts found in all Linux versions.)

However, the quality—or lack thereof—of the best-match font won’t be
reflected in the TFont. (This is true of Delphi, too.) TFont passes property

5. Well, actually, users can install font handlers for Postscript &c, and this does
complicate matters. But you can still write code that only sees TrueType fonts.

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

383383

read requests on to Qt, which simply returns the last value you set. To get
the actual values, you need to use QFontInfo. The Fonts project does this:
It allows you to specify only odd sizes, like 9, 11, 23, and 35 points to
increase the chances that Qt won’t be able to find an exact size match.

The QFontInfo class will not tell you how a given font family scales. You
need to use QFontDatabase, which offers three methods: isScalable,
isBitmapScalable, and isSmoothlyScalable. To complicate things, these
functions do not apply to a whole font family, but to a font family, with a
given combination of style (bold, italic) attributes, and a particular character
set. The following abbreviated snippet from the Fonts project shows how
to call these functions:

Figure 6-9. A poorly scaled bitmap font

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

384

procedure TFontsFrm.FontChange(Sender: TObject);

var

 Info: IFontInfo;

 Family, Encoding, Style: WideString;

begin

 Info := FontInfo(LoremIpsum.Font);

 Family := LoremIpsum.Font.Name;

 Style := FontDatabase.StyleString(LoremIpsum.Font);

 QFont_encodingName(@ Encoding, Info.CharSet);

 Scalable.Checked :=

 FontDatabase.IsScalable(Family, Style, Encoding);

 BitmapScalable.Checked :=

 FontDatabase.IsBitmapScalable(Family, Style, Encoding);

 SmoothlyScalable.Checked :=

 FontDatabase.IsSmoothlyScalable(Family, Style, Encoding);

end; // TFontsFrm.FontChange

The Family parameter should be the same as TFont.Name, a name
that might appear in Screen.Fonts. Screen.Fonts is generated by
QFontDatabase::families, which returns a name as “foundry-family” when
a family exists in several foundries. (Hence names like ‘adobe-courier’ and
‘urw-courier’.) QFontInfo::Name strips off the foundry-part: If you use a
QFontInfo Name for a Family parameter, you will get the info for a family
with that name, but not necessarily the one you want.

The Style parameter can be ‘Normal’, ‘Bold’, ‘Italic’, or ‘Bold Italic’. Rather
than build these strings myself—and risk possible future incompatibilities
or locale issues—I prefer to use the QFontDatabase::styleString function to
describe an existing TFont.

Similarly, I don’t think it wise to hardcode locale names into my apps.
QFont::encodingName returns a Qt-legible string version of the Qt locale
enum I get from the QFontInfo::charSet.

Once I gather this information and call isScalable, isBitmapScalable, and
isSmoothlyScalable, things are … still complicated. Some fonts (like
‘avantgarde’, on my system) that do scale smoothly are reported as not
scaling smoothly by any of the three functions; others (‘zapf chancery’) are
only reported as scaling smoothing with an ‘Italic’ style; while others
(‘adobe-courier’) that manifestly don’t scale smoothly are reported as
doing so!

I urge you to run the Fonts project and draw your own conclusions, but I’d
suggest this rule of thumb: Avoid fonts that are not smoothly scalable, and

..

fonts that are bitmap scalable.

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

385385

Key properties

TFont.Name selects a font or, more properly, a font family. Most font families
include fonts for different sizes, styles, and character sets. If the font Name
you select is on the user’s system—ie, is in Screen.Fonts—that’s the font
you’ll get. If the font doesn’t exist, Qt will do its best to find a plausible font.
See the Qt documentation (www.trolltech.com) for details.

TFont.Color can be any named TColor, or RGB value.
TFont.Size is a positive integer that is supposed to represent the font’s

height in “points”, which is a traditional printer’s measure: There are 72 points
to an inch. Kylix passes Size requests straight through to Qt, which presumably6
uses the same display size information it exposes in QPaintDeviceMetrics to
convert heights in points to heights in pixel.

TFont.Style property is a set of TFontStyle, which means it can be any
combination of fsBold, fsItalic, fsUnderline, and fsStrikeOut. Note that
because the set is a property, not a public field, you can’t use the system pro-
cedures Exclude and Include with Font.Style. You have to write code like with
ThisFont do Style := Style + [fsBold] or with ThisFont do Style := Style -
[fsItalic].

Minor properties

Naturally enough, TFont.CharSet selects the character set. Some font families
will be designed to have a similar feel across character sets, so you might
have a font named “Globalization” that has faces for Latin-1 as well as Greek,

6. Yes, I am in a state of sin: I’m writing a book about programming on an Open Source
operating system, using an Open Source widget library—and I’m making inferences
about how Qt does things, based on the public API, instead of reading the Source.

Note

When you read Font.Size, Kylix passes the request on to Qt, which
returns the last Font.Size that you set. When you change the font
family, if the font is not “smoothly scalable” Qt may not give you the
exact font size that you asked for; it may choose an actual size that’s
as much as 20% bigger or smaller than what you asked for. Reading
the Font.Size property, however, will give you what you asked for,
not what you actually got. To find out what Qt gave you, you need
to use QFontInfo.

��������	

��
�
���

���������
�������
���
����

����
�

Russian, Japanese, Chinese, Korean, Thai, and so on. The default value,
fcsDefaultCharSet, means that Kylix will ask Qt what CharSet is appropriate
for the user’s locale. This is usually fine, but may well cause problems in
Latin-1 applications running on machines that default to an Asian language.

TFont.Pitch allows you to specify whether the font is proportional (an ‘i’
is narrower than an ‘M’) or fixed pitch (all characters are the same width).
This is significantly less useful than it might seem. Setting Pitch to fpFixed
will not make a proportional font use fixed-width character cells as if it were
a fixed-pitch font, nor will setting Pitch to fpVariable make a fixed-pitch font
into a proportional one. Qt’s font matching algorithm gives more weight to
the Name and CharSet than to the Pitch, so changing the Pitch of a selected
font will have no effect. The only time Pitch will make a difference is when
the font family Name doesn’t exist on the current system, and Qt has to select
the best match based on CharSet, Pitch, Size, Weight, and whether or not fsItalic
is in the Style set.

Kylix is not Delphi

TFont.Height is just like Size, but is measured in pixels, not points. Delphi
programmers should note that Font.Height is always positive under Kylix, which
does not use negative Height’s to indicate the size sans internal leading.

TFont.Weight is a sort of generalized Bold attribute. Bold actually translates
to a standard Weight, fwBold, while non-Bold is fwNormal. You can, at least in
principle, get light or extra-bold fonts by setting Font.Weight—but few Linux
fonts look any different with a Weight of 1 than with a Weight of fwNormal, or
any different with a Weight of 100 than a Weight of fwBold. Note that adding and
removing fsBold to and from the Style set has no effect if Weight is neither
fwNormal nor fwBold. If the Weight may be non-standard, be sure to set Weight
to fwNormal or fwBold before toggling the fsBold Style attribute.

Note

English-only Delphi apps running on NT4 machines with a DBCS
[Double Byte Character Set] locale have problems if they use
DEFAULT_CHARSET, Delphi’s equivalent of fcsDefaultCharSet.
Their English text gets transcribed to the machine’s default character
set. To make sure that the text displays correctly even on machines
that aren’t set to an ANSI locale, you have to explicitly set the Font’s
CharSet to ANSI_CHARSET. I’ve done simple tests that don’t show a
similar problem–but I wasn’t using any text that contained UTF-8
escape sequences (see Chapter 1).

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

387387

Drawing operations

The drawing operations use the drawing tools to draw on a Canvas. Drawing
operations can be roughly divided into geometric operations that use the
Pen and Brush, text operations that use the current Font, and bitblts that
transfer rectangular pieces of an image from one Canvas to another.

Geometric operations

The geometric operations are all really pretty straightforward. I’ve used some
of them in example code already and, of course, they’re well documented in
the online help. In fact, I’ll just reiterate the basic point that the geometric
operations outline with the Pen and fill with the Brush, and talk a bit about
the operations that take open array parameters.

Graphics primitives like PolyLine and Polygon take an array of TPoint
parameter. Perhaps the most straightforward way to supply this array is the
way I did it in the Brushes project: an open array of calls to the Point function.7
As per Section 1, Kylix allocates space for the array on the stack, and passes
offsets into it to each call to the Point function, which fills in each Point
Result record. Kylix passes a pointer to the first Point, and an invisible Length
parameter, to the PolyX function, and then deallocates the array when the
function returns. All this is done automatically; it’s incredibly convenient
and reasonably efficient.

However, open arrays like this are also assignment compatible with both
dynamic arrays and regular, static arrays. This means that you can pass static
arrays and dynamic arrays to the PolyX routines that take open array param-
eters. You usually draw figures (in every OnPaint event) many more times
than you change them (when you create, destroy, or move an element).
Therefore, if a given figure is relatively expensive to compute (perhaps involving
perspective transforms, or z-order decisions), you may want to store the ver-
tices in a static or dynamic array. Then, your OnPaint handler could pass the
drawing primitive the pre-calculated array of vertices, instead of recalculating
them every time.

For example, in this snippet

7. I also use this approach in the FL3 project in the ch6/Canvas group. I won’t
talk much about this project—a Kylix port of a Delphi 1 port of a Turbo Pascal 4
project—but I will mention it again in the section on Printing. For a detailed
walkthrough of FL3, please see my magazine article about it at
http://www.midnightbeach.com/jon/pubs/3D_Fractal_Landscapes.html.

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

388

const

 Triangle: array[1..3] of TPoint = (

 (X: 10; Y: 20), (X: 100; Y: 100), (X: 30; Y: 200)

);

 Arbitrary: array of TPoint = Nil;

procedure TForm1.FormPaint(Sender: TObject);

begin

 Canvas.Polygon(Triangle);

 if Assigned(Arbitrary) then

 Canvas.Polygon(Arbitrary);

end;

Canvas.Polygon() works just as well with static arrays like Triangle and dynamic
arrays like Arbitrary as with an inline array: Canvas.Polygon(Triangle) is func-
tionally equivalent to Canvas.Polygon([Point(10, 20), Point(100, 100),
Point(30, 200)]), but clearer and a bit faster.

Text operations

Two basic routines draw text on a Canvas in the current Font: TextOut and
TextRect. These routines differ in two ways: TextOut simply takes a position
and a string, and draws the string at the position, without clipping or
wrapping, and without much alignment control. You can use the TextAlign
property to control whether the Y parameter is the top-line or the bottom-
line, but that’s about it. TextRect, on the other hand, allows you to specify a
clipping rectangle and to use the full complement of Qt alignment flags,
including word wrap and vertical and horizontal alignment.

Tip

The Slice() function allows you to select a few elements from a
larger array.

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

389389

Kylix is not Delphi

Delphi programmers should note that where Kylix’s TextOut is basically
identical to Delphi’s, Kylix’s TextRect adds an optional TextFlags parameter
that allows you to use any combination of the Qt TextAlign flags in Table 6-4.

Table 6-4. Qt TextAlign flags

Qt.pas name Interpretation Notes

AlignmentFlags_AlignLeft taLeftJustify Combining with AlignRight or

AlignCenter will give

unpredictable results.

AlignmentFlags_AlignHCenter taCenter

AlignmentFlags_AlignRight taRightJustify

AlignmentFlags_AlignTop tlTop Combining with AlignVCenter or

AlignBottom or will give

unpredictable results.

AlignmentFlags_AlignBottom tlCenter

AlignmentFlags_AlignVCenter tlBottom

AlignmentFlags_AlignCenter ord(AlignmentFlags_AlignLeft)

or ord(AlignHCenter)

You can only have one horizontal

and vertical flag; AlignCenter

counts as one of each

AlignmentFlags_SingleLine Treat all white-space as space;

don’t break or wordwrap.

AlignmentFlags_DontClip Ignore the bounds rectangle if

necessary.

Can draw where you don’t want it

to.

AlignmentFlags_ExpandTabs Honor ^I characters.

AlignmentFlags_ShowPrefix & underlines next character; &&

is an un-underlined &.

AlignmentFlags_WordBreak Wrap long lines at word

boundaries.

Can be combined with

ExpandTabs.

AlignmentFlags_DontPrint Don’t draw on the Canvas. Not particularly useful in Kylix, as

TextRect doesn’t return the

modified bounds rect. Use

TextExtent instead.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

390

Unfortunately, the combination of a verbose mechanical translation
that turned Foo::Bar into Foo_Bar and the decision to treat C++ assigned
enums as non-numeric ordinals condemns us to some long-winded and
unreadable code when it comes to Qt constants like these. Where a C++
programmer would combine these flags as eg AlignCenter | WordBreak |
ExpandTab, we’re forced to use ord(AlignmentFlags_AlignCenter) or
ord(AlignmentFlags_WordBreak) or ord(AlignmentFlags_ExpandTab). Ugh.

Finally, it’s not uncommon to need to know how many pixels a given
piece of text will take to display. Perhaps we need to display some text using
multiple fonts, or we want to trim the text to the space available, or to adjust
various controls to make room for the text. TextWidth returns the pixel width
of a given string, without any word wrapping, & underlining, or tab expansion.
Similarly, TextHeight returns the pixel height of a given string, also without
any word wrapping, & underlining, or tab expansion.

If you want to specify these alignment flags, or you want both height and
width, you should use TextExtent. This is available in two overloaded versions:
One is a function that returns a TSize—which is just like a TPoint except that
the fields are CX and CY, instead of X and Y—while the other is a procedure
that modifies a TRect parameter. Use whichever is more convenient. The
function calls the procedure, but the speed difference is not significant and,
of course, it’s always possible that this may be different in future
implementations.

Note

As the table indicates, these AlignmentFlags are defined in Qt.pas.
GUI programs do not automatically use Qt the way they automati-
cally use QGraphics, QControls, QForms, and QDialogs; if you want
to pass AlignmentFlags to TextRect (or TextExtent), you’ll need to
manually add Qt to one of the unit’s uses clauses.

Tip

Both TextWidth and TextHeight call TextExtent internally. If you are
using both values, you should call TextExtent directly. TextExtent
converts your string to a WideString (if it isn’t one already) and then
calls Qt. This is relatively expensive: It’s more worth paying attention to
not doing this twice than worrying about one extra layer of Pascal
function calls within CLX (viz TextExtent vs TextExtent).

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

391391

Kylix is not Delphi

As with TextRect, Delphi programmers should note that where Kylix’s
TextHeight and TextWidth are basically identical to Delphi’s, Kylix’s TextExtent
adds an optional TextFlags parameter. The Text project of the ch6/Canvas
project group illustrates this difference. TextHeight and TextWidth report the
unwrapped size: The pixel width of the longest paragraph, and the height of
five lines of text. By contrast, I use the form of TextExtent that allows me to
pass in the same flags that I pass to TextRect, and I get the wrapped size:
The pixel width of the longest wrapped line, and the height of all the
wrapped lines.

Bitblts

The bitblt—or Bit Block Transfer—is the basic workhorse of GUI windowing
systems. It moves a rectangular block of pixels (bits) from one portion of the
screen to another, or from one off-screen bitmap to another, or between the
screen and an off-screen bitmap. It’s used for everything from drawing text to
drawing pictures to moving windows. Paradoxically, because of its very
ubiquity, Kylix programs rarely need to do many bitblt’s themselves; it’s built
into some of the higher-level primitives and into key components like TImage
and TImageList. Of course, “rarely” is not the same as “never”, and so Kylix
canvases include bitblt support, via the CopyRect procedure. (To copy a
whole image—perhaps loaded from a file—onto a Canvas, you’d typically
use the Draw (or StretchDraw) procedure. See the TBitmap section, below.)

CopyRect takes three parameters: a destination rectangle, a source
Canvas, and a source rectangle. The Canvas that ‘does’ the CopyRect is the
Canvas that’s copied to. Eg,

ThisCanvas.CopyRect(ThisRect, ThatCanvas, ThatRect);

copies ThatRect from ThatCanvas to ThisRect on ThisCanvas. The use of a
destination rectangle is actually a bit misleading: Only the Left and Top
fields are used. That is, bitblts are neither clipped nor stretched when the
destination rectangle is not the same size as the source rectangle. Under
Kylix 1, the transfer will always be the size of the source rectangle; this may
change in future releases, if Qt implements a StretchBlt function.8

8. If you really need StretchBlt abilities now, you can always synthesize them, via the
following four step process: 1) Create a temporary TBitmap the size of the source
rectangle. 2) Copy the source rectangle to the temporary bitmap. 3) StretchDraw the
temporary bitmap to the destination rectangle. 4) Free the temporary bitmap.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

392

You can use CopyRect to move an image (or part of an image) from any
Canvas to any other. CopyRect can also copy from one part of a Canvas to
another, as in

ThisCanvas.CopyRect(ThisRect, ThisCanvas, ThatRect);

When you do a ‘self copy’ like this, there is no requirement that ThisRect and
ThatRect not intersect. That is, you can do bitblt’s that overwrite (part of) the
source. See the BitBlt project of the ch6/Canvas group for an example.

Normally, CopyRect simply replaces every pixel of the destination with
the appropriate pixel of the source. In some cases—combining layers, and so
on—this isn’t what you want. The Canvas.CopyMode property allows you to
specify one of sixteen different ways to combine the source and destination bits.

One common use for copy modes is transparent bitmaps. You use
various copy modes to define a mask bitmap, a monochrome bitmap with 1’s
where the transparent bitmap has non-background pixels and 0’s where the
transparent bitmap has background pixels (or vice versa). You then use this
mask to “cut out” this destination rectangle—ie, force every pixel that’s going
to be replaced to be black—then “drop in” a masked source rectangle. You
can do this in Kylix, of course—but you shouldn’t, as the TBitmap class has
already done it for you. (See the TBitmap section, below.)

ClipRect

Normally, of course, you want to be able to draw on the whole Canvas. Some-
times, though, you don’t. For example, one of my recent contracts needed to
draw a “letterhead” at the top of a scrolling sheet of “paper”. When the paper
was scrolled down only a little, some of the letterhead showed and some
didn’t. Knowing how far the paper had scrolled, I could just draw the letterhead

Note

Delphi programmers should note that Kylix’s CopyMode is different
from Delphi’s. In Delphi, CopyMode is a 32-bit integer that allows
you to specify any possible Win32 “ternary raster ops”. The Borland
defined copy modes like cmSrcCopy are simply named constants. In
Kylix, CopyMode is an enum; if you have existing code that uses custom
copy modes, you’ll have to rewrite it.Kylix is not Delphi

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

393393

at a negative Y position, and some would appear and some wouldn’t. But, the
customer also wanted a decorated margin all around the paper. Undoubtedly, I
could have layered one TPaintBox on top of another, but the simplest solution
was to just set Canvas.ClipRect to not overwrite the decorated margin. Then,
I could just write the letterhead at the top of the “paper”, and the system
would take care of only drawing the parts that were actually visible.

Qt actually supports clip regions, which are pretty comparable to Windows
regions. You can create simple regions with operations analogous to drawing
rectangles, ellipses, and polygons, or you can convert a transparent bitmap
into a region. You can combine simple regions into compound regions with
union, intersection, subtraction, and xor operators. As under Windows, you
can use these regions to clip, or for hit detection via the QRegion::contains()
function. Also as under Windows, Kylix allows you to call these functions
(Qt.pas contains QRegion_ bindings for all QRegion:: member functions) but
does not provide Object Pascal wrappers.

TBitmap

Naturally enough, the TBitmap class represents bitmapped images. Several
components—in particular TImage and the various classes like TSpeedButton
and TBitBtn with a Glyph property—have TBitmap properties, and you can
of course create your own instances of TBitmap at runtime. TBitmap includes
methods to load from and save to files and streams, and it has a Canvas so
you can create complex drawings off-screen. You can Draw or StretchDraw a
whole bitmap onto any Canvas, and you can use CopyRect to extract pieces
of a bitmap.

When you Assign() one bitmap to another, all that’s copied is some
descriptive information. The actual image information—which can be quite
large—is reference counted by Qt, in much the same way as strings are by
Kylix, so that copying takes very little time or memory.

Note

See Chapter 7 for a discussion of loading bitmaps from your
executables’ resource section.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

394

File formats

To load a bitmap from a file image, you call its LoadFrom or LoadFromFile
methods. To save a bitmap to file, you call its SaveTo or SaveToFile methods.
(You can also load from and save to a stream; see Chapter 7 for more on
Kylix’s streams.) You can control the output format by setting the Format
property before calling SaveTo.

The Bitmap project in the ch6/Canvas project group illustrates how
simple this can be.

if OpenDialog.Execute then

begin

 Image.Picture.Bitmap.LoadFromFile(OpenDialog.FileName);

 ClientHeight := Image.Top + Image.Height;

 ClientWidth := Image.Width;

end;

OpenDialog.Execute pops up the open file dialog, and returns True if the
user clicked “Open”. The FileName property contains the complete path to
the selected file. The TImage can hold a variety of different Picture types, so
I use Image.Picture.Bitmap to specify that it’s a bitmap file that I want to
load. Kylix and Qt do all the work of checking and decoding the file format.

The Bitmap project also shows how to get the current list of supported
formats. (See Figure 6-10.) This may change from release to release, as new

Figure 6-10. File formats

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

395395

formats come along or various legal issues ruin old standards. Under Kylix 1,
for example, you can read GIF files but you can’t write them.

procedure TBitmapFormatsFrm.FormCreate(Sender: TObject);

var

 List: QStringListH;

begin

 List := QStringList_create;

 try

 QImage_inputFormatList(List);

 CopyQStringListToTStrings(List, InputFormats.Items);

 QImage_outputFormatList(List);

 CopyQStringListToTStrings(List, OutputFormats.Items);

 finally

 QStringList_destroy(List);

 end;

end; // TBitmapFormatsFrm.FormCreate

LoadFromFile and SaveToFile figures out what file format to use from
the file’s extension. If you are loading from or saving to an anonymous
stream, you need to explicitly set the Format property to one of the values in
the input or output formats list.

While Qt offers control over image quality (eg, JPEG compression), Kylix
doesn’t wrap this. To control the space/quality tradeoff, you need to make a
raw Qt call, as in this function from lib/QGrabBag:

type

 TQtQuality = -1..100;

function SaveBitmap(Bitmap: TBitmap;

 const Filename: WideString;

 const Format: string;

 Quality: TQtQuality = -1): boolean;

begin

 Result := QPixmap_save(Bitmap.Handle, @ Filename, PChar(Format), Quality);

 // Quality of –1 is default quality, the same as you get from Kylix.

 // 0 is low quality (small file); 100 is high quality (big file).

end; // SaveBitmap

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

396

Draw and StretchDraw

Draw and StretchDraw are Canvas methods that draw any TGraphic on a
Canvas. TBitmap is the most important type of TGraphic; others include
TIcon and TDrawing. With Draw, you specify an X, Y position and a graphic;
the graphic is drawn full sized, with the top left at [X, Y]. With StretchDraw,
you specify a rectangle and a graphic; the graphic is stretched or shrunk to fit
into the rectangle. Note that since a TBitmap has a Canvas property of its own,
you can Draw This bitmap onto That bitmap: That.Canvas.Draw(X, Y, This).

Transparency

All TGraphics have a boolean Transparent property, and Draw and StretchDraw
both honor transparency. When you load a bitmap from a file with trans-
parency information, the bitmap will, naturally, be transparent. If you want to
make a normal bitmap transparent, you have to specify the transparent color.

Bitmaps have three transparency related properties: Transparent, Trans-
parentColor, and TransparentMode. TransparentMode has two different
values: tmAuto and tmFixed. tmAuto is the default, and means that the color
of the bottom-left pixel will be used as the transparent color. That is, if you
set Transparent to True, the TransparentColor property will be set to the color of
the bottom-left pixel, and all pixels of that color will be Transparent. If you set
TransparentMode to tmFixed, you can set the TransparentColor to whatever you
like. (Conversely, if you do set TransparentColor, TransparentMode will auto-
matically change to tmFixed.) Specifying a TransparentColor allows you to
have bitmaps where the bottom-left pixel is not transparent.

Low-level manipulation

Most programs draw on bitmaps just as they draw on any other canvas, with
TextOut, Rectangle, Polygon, and the like. But some of the time, you need
low-level pixel-by-pixel access. For example, it would have been impossible
to create the gradient bitmap in the Brushes example without setting pixels

Note

Delphi programmers need to be aware that the CLX TBitmap is rather
different from the VCL TBitmap. In particular, the CLX TBitmap has
no MaskHandle property.

Kylix is not Delphi

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

397397

one by one. Similarly, applying any sort of graphics filter to a bitmap requires
reading and writing individual pixels. Since there can be hundreds of thousands
of pixels in even a relatively small image, it’s important that pixel-by-pixel
access is very fast.

TBitmap provides both a PixelFormat property that allows you to get and
set the bit-depth of each individual pixel, and a ScanLine property which gives
you access to each row of the image as an array of pixels. The PixelFormat is
of type

TPixelFormat = (pf1bit, pf8bit, pf16bit, pf32bit, pfCustom);

but probably most programs that manipulate pixels force it to pf32bit, as an
array of 32-bit integers is a lot easier to work with than a “high color” array of 16-
bit integers, a palletized array of 8-bit bytes, or (especially!) a monochrome bit-
stream. (You’re not likely to see pfCustom except with uninitialized bitmaps;
pfCustom basically means ‘unexpected result from QImage::depth()’.)

The ScanLine property is an array property that returns an untyped
pointer to the first pixel in the row. It’s your responsibility to cast it to some-
thing like a ^ array[word] of LongWord as in this relatively long bit from the
Brushes project:

type

 TInterpolateRec = record

 Start, Delta, Steps: integer;

 end;

function InterpolateRec(Start, Stop, Steps: integer): TInterpolateRec;

begin

 Result.Start := Start;

 Result.Delta := Stop - Start;

 Result.Steps := Steps;

end; // InterpolateRec

function Interpolate(const InterpolateRec: TInterpolateRec;

 Step: integer): integer;

begin

 with InterpolateRec do

 Result := Start + Delta * Step div Steps;

end; // Interpolate

const

 StartColor = clBlue;

 StopColor = clWhite;

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

398

procedure TBrushesFrm.FormCreate(Sender: TObject);

type

 ArrayOf32Bit = array[word] of LongWord;

var

 cbLeft, cbRight: integer;

 Colors, Index: integer;

 R, G, B: TInterpolateRec;

 ScanLine: ^ ArrayOf32Bit;

begin

 ColorBar := TBitmap.Create;

 cbLeft := 0;

 cbRight := Bitmapped.Left + 250 - 1;

 Colors := cbRight - DenseSpectrum.Left;

 R := InterpolateRec(StartColor and $FF,

 StopColor and $FF,);

 G := InterpolateRec(StartColor and $FF00 shr 8,

 StopColor and $FF00 shr 8, Colors);

 B := InterpolateRec(StartColor and $FF0000 shr 16,

 StopColor and $FF0000 shr 16, Colors);

 ColorBar.Height := 1;

 ColorBar.Width := cbRight - cbLeft;

 ColorBar.PixelFormat := pf32bit;

 ScanLine := ColorBar.ScanLine[0];

 for Index := 0 to Colors do

 ScanLine^[Index + DenseSpectrum.Left + 1] :=

 pf32RGB(Interpolate(R, Index),

 Interpolate(G, Index),

 Interpolate(B, Index));

end; // TBrushesFrm.FormCreate

The first line of FormCreate creates the bitmap and saves a reference to
it in a private field of the form object. (The OnDestroy event handler frees it.)
I calculate the bitmap Width from the position of various labels … after all,
this is just a quick demo. Real code would probably bury those calculations
in a single, maintainable method. The bitmap is only 1 high, and I force the
PixelFormat to pf32bit. The Interpolate() and InterpolateRec() functions use
a straightforward mul/div idiom to calculate each pixel’s RGB components.

ScanLine is not an
array of TColor values,
even in pf32bit mode.

The real work is done in the for loop, which sets each pixel in turn. Note
that it uses pf32RGB, not the TColor returning RGB function I showed earlier.
pf32bit pixels use a different encoding than TColor does; their R and B com-

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

399399

ponents are switched. Thus, the low (or first) byte is the Blue component, the
second byte is the Green component, and the third byte is the Red component—
or xxRRGGBB in ‘pseudo-hex’.9

Pixmaps

Kylix is not Delphi

Delphi programmers are familiar with the VCL’s TBitmap.HandleFormat,
which allows you to switch between fast, device-dependent bitmaps [DDB],
and editable device-independent bitmaps [DIB]. The CLX’s TBitmap doesn’t
work that way. Each bitmap exists both as an Image, which corresponds
more or less to a DIB, and a Pixmap, which corresponds more or less to a
DDB. The Image is what gets loaded and saved, and the Pixmap is what gets
drawn to the screen. Kylix keeps the two in synch, and you rarely have to pay
attention to the implementation details.

However, you do need to keep the implementation in mind when you
are working with the ScanLine property. You can use a ScanLine pointer to
read and write the Image side of the bitmap. Before a changed image can be
displayed, any changes have to be reflected on the Pixmap side. Unfortu-
nately, there’s no way to tell Qt ‘I just changed this rectangular region of this
Image; please migrate those changes to this Pixmap’—you have to regen-
erate the whole Pixmap.

The ScanLine property’s read function—QGraphics.TBitmap.
GetScanLine—handles this by calling FreePixmap before returning a pointer
to the first pixel. This means that the next time you Draw the bitmap or do
anything else that requires a Pixmap, Kylix will automatically regenerate one.
For simple applications like the Brushes project, this poses no real concerns.
I built a bitmap pixel by pixel, and it worked just fine when I assigned it to
a Brush.

However, if you are doing some long operation on a large bitmap and
wish to show your progress, line by line, you have to pay attention to this
issue. Each time you get the ScanLine of a new row, Kylix calls FreePixmap. If
you haven’t done anything that required a QPixmap since the last read of the
ScanLine property, this has no real effect. However, if you’ve gone and done
a CopyRect of the updated line to the screen, you’ve created a new Pixmap.
This took a while, which means your line-by-line processing is limited by the
need to keep recreating (and freeing) Pixmaps of the whole image.

9. The high, or ‘xx’ byte represents an optional “alpha channel”. If you’ve enabled the alpha
channel, this allows you to specify the transparency of each pixel, which obviously can be
very useful for layering images on top of each other, as programs like PhotoShop do, or for
fading from one slide to the next. If you want to experiment with alpha channel effects, see
the Qt documentation (www.trolltech.com) for QImage::setAlphaBuffer.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

400

The best solution is to maintain a one-row working bitmap, and manip-
ulate its ScanLine[0], then Draw or CopyRect it to the large bitmap and to the
screen. Remember, you’ll need to FreePixmap at the start of each row, either
by reading ScanLine[0] again or by explicitly calling FreePixmap.

Printing

Printing under Kylix is reasonably straightforward. Use the QPrinters unit to
get access to the Printer function. This returns a reference to a global TPrinter
object that lets you select printers from the list of printers attached to the
system. It also provides information about the printers, and provides a
Canvas you draw on just as you’d draw on any other Canvas. The FL3 project
in the ch6/Canvas group provides a simple example.

Printer.Printers is a TStringList of available printers that you can use to let
users select a printer. Set Printer.PrinterIndex to select a printer from this list; by
default, you print to the system default printer, or Printer.PrinterIndex = -1.

You have to call Printer.BeginDoc before you start using Printer.Canvas, and
you have to call Printer.EndDoc before the page will print. Printer.PageHeight
and Printer.PageWidth allow you to scale your drawings to fit the page.

Kylix is not Delphi

Delphi programmers will note the absence of TPrintDialog and TPrint-
erSetupDialog from the Dialogs tab of Kylix’s Component Palette. Qt does
provide a dialog that pretty much combines the two, but it’s a tad … quirky.
(Presumably that’s why Borland didn’t wrap it for Kylix 1.) To bring up the Qt
print dialog, use

if (Printer.PrintAdapter as TQPrintAdapter).ExecuteSetup then {print};

QPainter

If you look at QGraphics.pas, you can see that TCanvas is actually a fairly thin
wrapper for Qt’s QPainter. Most Canvas operations are implemented as
QPainter operations, using only a few lines of code. This means that dealing
with Qt via the Canvas layer isn’t all that much slower than dealing with Qt
directly. It also means that you can call any QPainter functions that Borland
doesn’t wrap.

For example, QPainter includes a rich set of coordinate transformations
that make it easy to rotate, scale, and translate drawings. If you want to draw
rotated text, just about all you need to do is to call QPainter_rotate, as in this
OnPaint event handler from the QPainter project (Figure 6-10) in the ch6/
Canvas project group.

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

401401

procedure TQPainterFrm.PaintRotatedText(Sender: TObject);

const

 Steps = 12;

var

 Index: integer;

begin

 Canvas.FillRect(ClientRect);

 Canvas.Font.Color := clBlue;

 // Move 0,0 to the center of the form

 QPainter_translate(Canvas.Handle, Width div 2, Height div 2);

 for Index := 0 to Steps - 1 do

 begin

 Canvas.TextOut(35, 0,

 Format('Rotated %0.f degrees', [Index * 360 / Steps]));

 // Rotate clockwise

 QPainter_rotate(Canvas.Handle, 360 / Steps);

 end;

end; // TQPainterFrm.PaintRotatedText

Figure 6-11. Rotated text

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

402

There are five things worth noting, here. First, you have to pass
Canvas.Handle as the first parameter to the QPainter_ calls that expect a
QPainterH. Second, the call to QPainter_translate() moves the coordinate
system’s origin from the top left of the form to the point we want to rotate
around, the center of the form. This makes it much easier to place our
rotated text, as rotation affects not just the way the text is drawn but the very
meaning of the coordinates we pass to TextOut. (Try commenting out the
call to QPainter_translate() and see if you can get all twelve strings to draw on
the form.) Third, we can freely mix “raw” QPainter_ calls with Canvas operations
like TextOut. Fourth, QPainter_rotate() takes an angle measured in degrees (not
radians!) and rotates clockwise. Fifth, we don’t need to call QPainter_save and
QPainter_restore to protect other drawing operations from our coordinate
transformations. Kylix brackets OnPaint event handlers with Canvas.Start and
Canvas.Stop operations, which in turn call QPainter_begin and QPainter_end,
which implicitly save and restore the coordinate system. You can, of course,
use QPainter_save and QPainter_restore to push and pop coordinates during
complex drawings, but you don’t need to ‘put things back as they were’.

The QPainter project in the ch6/Canvas project group has an action list
that calls DrawRotatedText when you press CTRL+D. Outside of the different
color, DrawRotatedText isn’t very different from PaintRotatedText:

procedure TQPainterFrm.DrawRotatedText(Sender: TObject);

const

 Steps = 12;

var

 Index: integer;

begin

 Canvas.FillRect(ClientRect);

 Canvas.Font.Color := clRed;

 // Move 0,0 to the center of the form

 QPainter_translate(Canvas.Handle, Width div 2, Height div 2);

 for Index := 0 to Steps - 1 do

 begin

 Canvas.TextOut(35, 0,

 Format('Rotated %0.f degrees', [Index * 360 / Steps]));

 // Rotate clockwise

 QPainter_rotate(Canvas.Handle, 360 / Steps);

 end;

 end; // TQPainterFrm.DrawRotatedText

// Outside of a Paint handler, bracket QPainter_ calls with a Start/Stop

Canvas.Start;

try

 finally

 Canvas.Stop;

 end;

��������	

��
�
���

���������
�������
���
����

����
�

Canvas

403403

All QPainter drawing operations have to be bracketed by a QPainter_begin
and a QPainter_end. Kylix wraps this in Canvas.Start and Canvas.Stop, and
calls Start and Stop around every Canvas drawing operation. In the OnPaint
event handler, I didn’t have to explicitly call Canvas.Start and Canvas.Stop,
because Kylix wraps those around the event handler. But Kylix doesn’t wrap
most event handlers with Canvas.Start and Canvas.Stop because that would
be inefficient, and because it has no way of knowing which Canvas you
might draw on. So, when we call raw QPainter routines outside of an OnPaint
event (or if we are modifying a QPainter from within another QPainter’s
OnPaint handler) we have to call Canvas.Start and Canvas.Stop. If you
comment out the Canvas.Start and Canvas.Stop lines in DrawRotatedText,
the text will not be rotated or translated, and all twelve strings will be drawn
on top of each other in the top-left of the form.

Note that Canvas.Start and Canvas.Stop are implemented using a “start
count” approach that means that you can safely nest Start/Stop pairs. Thus,
the Start/Stop within Canvas.TextOut doesn’t affect the Start/Stop around
the translation and rotation. Similarly, the QPainter project would work just
fine if you set the form’s OnPaint handler to DrawRotatedText, which
explicitly calls Canvas.Start and Canvas.Stop, instead of PaintRotatedText,
which doesn’t.

Note

It’s a good idea to call Canvas.Start and Canvas.Stop around every
operation that calls QPainter_ directly, even if it’s in an OnPaint event
handler. The incremental cost is very modest, and you can then use the
same code in paint and other event handlers. (Not to mention that
people reading your code–which might be you in five years–don’t have
to wonder why you call Start/Stop here but not there.) I deliberately
don’t call Start/Stop in PaintRotatedText because I want to contrast
PaintRotatedText and DrawRotatedText–PaintRotatedText is hardly
an example of Best Practices!

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

404

Finally, it’s probably obvious that I’ve only scratched the surface of what
you can do with QPainter coordinate transformations. The Qt documen-
tation includes an example of how easy coordinate transformations make
drawing a clock. Similarly, translation and scaling would simplify any line or
bar charting.

Shearing does translation along one axis by an amount that increases
linearly with another axis; it looks as if your drawing was composed of layers
that slide over each other. It’s a standard coordinate transform—Windows
and Java offer shearing, too—but I suspect that this is because it’s mathemat-
ically trivial, not because it’s incredibly useful. You can use shearing to
synthesize an (ugly) italic font from an upright font (as in the CTRL+S action
of the QPainter project), but shearing’s neither a perspective transform nor a
z-axis rotation transform.

I’ve included an Object Pascal wrapping of the coordinate transformation
parts of the QPainter API in lib/QGrabBag. (See the ITransform interface, and
the Transform() function.) You can use the raw QPainter_ calls if you like, but
I think you’ll find that my thin object layer makes for clearer code—look at
the difference between the rotated and sheared text procedures, where code like

QPainter_translate(Canvas.Handle, Width div 2, Height div 2);

gets replaced by

QPainter.Translate(Width div 2, Height div 2);

Forms

So far in this chapter, I’ve talked a lot about controls and canvases, but not
much about the forms they sit on. This section is all about forms.

Opening and closing forms

When you or your users run a Kylix application, the Main Form (as defined
on the Forms tab of the Project Options dialog) is shown. If you want any
other forms to show, you have to make that happen.

Forms can be shown either modally or modelessly. Modal forms take
precedence over other forms; when a modal form is open, none of the other
forms in the application can be activated (brought to the front and given
keyboard focus) until the modal form is closed. When a modeless form is
active, you can activate other modeless forms. Modal forms are useful for

��������	

��
�
���

���������
�������
���
����

����
�

Forms

405405

About boxes, yes/no popups, and some configuration dialogs, while mod-
eless forms are more suitable for the various parts of an application that you
may need at any time but not all the time. (The various windows in the Kylix
IDE—the main window, Code Editor, Object Inspector, Project Manager,
Alignment Palette, and the various debug windows are all modeless forms.)

The same form can be modal or modeless at different times. What con-
trols modality is how you make the form visible. When you call ShowModal,
the form is opened modally, and control doesn’t return to the calling code
until the form is closed. When you call Show, or set Visible to True, the form
is opened modelessly; control returns to the calling code as soon as the new
form is visible. Modal forms are a bit easier to deal with, as the same routine
can open them and proceed to deal with any information entered on them.
The Execute procedure of the standard dialogs is basically a wrapper for
ShowModal that returns True when the OK or Open buttons are pressed.

If you ever need to know whether a particular form is modal or modeless,
you can examine its FormState: if fsModal in FormState, then the form is
modal. If not, it’s modeless.

Modal forms can be closed by calling their Close method, by the user
clicking on the frame’s close button, or by setting their ModalResult property
to a non-zero value. (TButton’s and TBitBtn’s can be configured to set their
form’s ModalResult automatically.) ShowModal is a function, which returns
the ModalResult property of the form. Thus, you can write either

 ThisForm.ShowModal;

 if ThisForm.ModalResult = mrOK then {whatever};

or

 if ThisForm.ShowModal = mrOK then {whatever};

Modeless forms can be closed by calling their Close method, by calling
their Hide method, by setting Visible to False, or by the user clicking on the
frame’s close button. The visual effect of all these is the same, but Hide doesn’t
invoke the OnCloseQuery and OnClose event handlers. The OnCloseQuery
event lets you prevent a form from being closed (perhaps it contains invalid
required data) and the OnClose event lets you control how the form is closed.

Note that there is a difference between closing a form and freeing the
form object! Normally, when a form is closed, that’s all that happens. The GUI
window goes away, but the object stays there, with all its data still valid. You can
call the object’s methods to extract data from it; you can bring it up again.

The form’s OnClose event handler lets you control what happens when
the form is closed, no matter how it’s closed. The default is to just close the
form, but you can set the var Action: TCloseAction parameter to either

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

406

prevent the form from closing, minimize instead of closing, or close and then
free the form object. Note that you will normally use this last, caFree close
action only with modeless forms—code following a ShowModal often extracts
some data from the form object, and it can’t do this if the object has been
freed—but Kylix has no mechanism to keep you from setting CloseAction :=
caFree in a modal form’s OnClose event handler.

It’s common for infrequently used popups to be created and destroyed
in the routine that shows them modally. This sort of code often uses the
idiom I used in the Bitmaps project in the ch6/Canvas project group:

class procedure TBitmapFormatsFrm.Popup;

begin

 with TBitmapFormatsFrm.Create(Nil) do

 try

 ShowModal;

 finally

 Release;

 end;

end; // TBitmapFormatsFrm.Popup

Note the way that the with TBitmapFormatsFrm.Create(Nil) do allowed
me to create a form without declaring a form variable. This is a mildly con-
troversial practice. The vocal minority who find with statements confusing
are rendered apoplectic by this “anonymous object”. Most find it perfectly
clear, and appreciate the avoidance of boilerplate code. For what it’s worth,
Borland uses this “with Create” idiom throughout the CLX and VCL.

When you Release an open form, it will be closed before it’s freed. This
will trigger the OnClose event. Be careful never to use an OnCloseEvent
handler that sets Action := caFree in a form that will be explicitly Release()d:
freeing an already free form is just as much of an error as re-freeing any
another sort of object.

Note

More importantly, note how I call Release, not Free. You should
always call Release to free a form object, not Free. Release waits for
all event handlers on the form or its components to finish executing
before freeing the form object. Using Free with a form may lead to
intermittent SIGSEGV’s.

��������	

��
�
���

���������
�������
���
����

����
�

Forms

407407

Finally, notice how TBitmapFormatsFrm.Popup is a class procedure of
the form itself. This keeps the knowledge of what’s involved in popping up
the form (which, admittedly, isn’t much in this case) local to the form
object—and saves code, if Popup is called from two or more places.

Form variables

Whenever you create a form, Kylix creates a form variable for it. A form
named Foo has a form object type named TFoo and a form variable of type
TFoo named Foo. By default, all forms in a project are created at load time,
and their form variables are set to point to them. Only the main form is made
visible, but all the others are ready to Show or ShowModal. Thus, you can
bring up the form named Foo from the main form (or any other form) by
including its unit in a uses clause in the other form’s unit, and coding
Foo.Show or Foo.ShowModal.

This is wonderfully convenient for small, simple apps, but it can make
for excessively long load times for larger apps. Large apps can also end up
wasting a lot of system resources on windows that are only brought up infre-
quently. Thus, you can control the list of auto-create forms on the Project
Option dialog, and you can choose in Environment Options to change the
default new form behavior to manual create. If you select manual creation,
only the first form in an application is auto-created.

When a form besides the main form comes and goes a lot, it can make
sense to create it the first time it’s needed, and then leave it around. Thus,
you’ll sometimes see code like

if not Assigned(Frequent) then

 Frequent := TFrequent.Create(Application);

Frequent.ShowModal;

Similarly, one commonly needs to assure that there is no more than one
instance of a form (or other object) at a time. This “singleton pattern” is
usually implemented by replacing the public form variable with a form
function that refers to a hidden (implementation section) form variable:

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

408

var

 FSingleton: TSingleton;

function Singleton: TSingleton;

begin

 if not Assigned(FSingleton) then

 FSingleton := TSingleton.Create(Application);

 Result := FSingleton;

end; // Singleton

However, manually created forms often don’t use the form variable at all.
For example, most About boxes are created using the anonymous object idiom I
just used in TBitmapFrm.FormatsBtnClick. Similarly, many modeless forms are
created and shown in a single operation as TModeless.Create(Application).Show,
and rely on a caFree CloseAction to Release their memory when done.

One time where you need to be especially careful with form variables is
when you have multiple copies of a form. (Kylix’s “New Code Window” is an
example; you can have as many different tabbed code editors open as you
can keep track of.) Just as with any other object class with multiple instances,
each form copy shares code but also has its own form object. Most code in
event handlers and such will refer to Self, and so will have no problem with
multiple instances, but you do want to be sure that you don’t do something
stupid like assign each new instance to the form variable as you create it.
Generally, you would delete the form variable, and store references to each
form in a variable length list (see Chapter 7).

Tip

If you don’t use the form variable, you should go ahead and delete it.
This will save four whole bytes of global data space and (much
more importantly) reduce possible confusion.

��������	

��
�
���

���������
�������
���
����

����
�

Forms

409409

Inter-system differences

Kylix is not Delphi

Windows is a much more uniform environment than Linux. Under Delphi,
when you maximize a window, it will not cover the system tray, and in fact
you have to go through some contortions to get a true full-screen window.
Under Kylix, your form’s maximize behavior will depend on the user’s
window manager. That is, on some systems, windows will maximize as on
Windows, and not cover system windows like panels and task bars. On other
systems, windows will maximize to the full-screen size.

This is just one more of those things, like BorderStyle and BorderIcons,
that you can’t count on.

One thing that you can count on is that Screen.PixelsPerInch (see
Chapter 7) will vary from system to system. (According to the Qt documen-
tation, this is “usually” a function of dot count divided by monitor size—but
I found that my PixelsPerInch changed when I upgraded from Redhat 6.1 to
Redhat 7.0 and installed a different set of X fonts.) This matters, because your
design time PixelsPerInch is saved in the form resource if the form’s Scaled
property is True. At load time, Kylix will attempt to resize your Scaled forms
so that they look about as big on the users’ monitor as they did on yours.
Thus, if you design a 300 pixels wide form on your 75 PixelsPerInch monitor,
it will come up as 384 pixels wide on a 96 PixelsPerInch monitor.

The controls usually scale just fine. However, fonts never scale as smoothly.
The closest match to the scaled font size may actually be bigger or smaller
than the scaled size, so the text may be proportionately bigger or smaller
than it was at design time. This may not matter for very simple forms. You
can just leave enough white space that a 20% jump in relative font size (see
the Font section, above) won’t break things. That’s a lot of white space,
though, and is usually not possible on more complex forms.

Most people set Scaled to False on all but the simplest dialogs. This means
that their forms look smaller on high dot count monitors than on low dot
count monitors, but users are used to that, and it’s generally better than
having either tiny text or huge, clipped text.

Form events

Like any other component, forms have events. Some are completely generic,
like the OnMouseX events. Others are generic but behave slightly differently
on forms than other controls, like the OnKeyX events; others are unique to
forms, like OnCreate. This sub-section is about the events that are unique to
forms, with a brief description of keyboard events at the end.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

410

A form’s OnCreate and OnDestroy events are analogous to its constructor
and destructor,10 and essentially complementary. You can put setup and
teardown code in either the constructor and destructor or in the OnCreate
and OnDestroy events, but you generally choose either one or the other, not
both. Most people use the OnCreate and OnDestroy event handlers, not the
constructor and destructor, simply because it’s easy to jump to them from
the Object Inspector. About the only time you really will use a form’s con-
structor is when you need something to happen before the inherited Create.
This is not a very common event.

The OnCreate event is a good place to populate various components,
like the ch6/Fonts project’s ScreenFonts.Items := Screen.Fonts. The
OnCreate event is also a good place to Create any non-component objects,
like string lists or semaphores. Just as with class constructors and destructors, I
try to always create an OnDestroy event at the same time I create an OnCreate
event, and always add a Free line to OnDestroy as I add a Create line to
OnCreate. This small bit of self-discipline goes a long way toward preventing
memory leaks.

The OnShow and OnHide events are called when a form is opened
(whether by calling Show or ShowModal or by setting Visible to True) and
closed (whether by calling Hide or Close or by setting Visible to False). If a
form is freed as soon it’s closed, it doesn’t much matter whether you put
setup code in OnCreate or in OnShow. However, if a form is closed and re-
opened, OnCreate will be called once, while OnShow will be called several
times. It thus makes sense to restrict OnCreate to initialization (creation of
non-components, and population of components that won’t change) while
OnShow should be used only for re-initialization (resetting any state that
might change while the form is open).

When you show a form, OnActivate is called after OnShow. It’s then
called whenever control is transferred to this form from another form in the
application. That is, imagine you have two modeless forms open, This and
That, with This being active, the one with the keyboard focus and the high-
lighted caption bar. When you click on That, it becomes active: This’s
OnDeactivate event fires, then That’s OnActivate event fires.

10. For that matter, OnCreate is called from TCustomForm.Create, while OnDestroy is
called from TCustomForm.Destroy.

��������	

��
�
���

���������
�������
���
����

����
�

Forms

411411

Finally, I’ve already mentioned the OnClose and OnCloseQuery events,
which are called whenever the form is being closed. The OnCloseQuery
event allows you to abort the close operation; the OnClose event allows you
to control how the form is closed. If neither interferes with the closing
process, they are followed by an OnDeactivate event, an OnHide event, and
then (if CloseAction was set to caFree) by an OnDestroy event.

KeyPreview

Normally, keyboard events go to the form’s ActiveControl. If you want to see
keystrokes in a form-wide event handler, you need to set the form’s KeyPreview
property to true.

Kylix is not Delphi

Under Delphi, this works no matter what BorderStyle you have selected.
However, Qt has this strange notion that borderless windows are not inter-
active, and so don’t get the keyboard focus. Fortunately, you can override this
simply by including the line

QWidget_setActiveWindow(Handle);

in the form’s OnShow handler. (See the date picker component in Chapter 9
for an example.) Note that you only need to do this if BorderStyle = fbsNone!
I suspect that it can’t hurt to call QWidget::setActiveWindow in other cases,
but I think of this as a hack and a kluge that limits portability, and prefer to
use it only where necessary.

Enter as tab

One common reason to use KeyPreview is to treat the Enter key like the Tab
key, and use it to move to the next active control. This is a common requirement
in heavy-duty data entry applications, where the operators will be using the
application day in and day out, and every keystroke counts. Particularly

Note

Kylix distinguishes between a transfer of activation within the
application, and a transfer of activation from another application.
A form’s OnActivate is only fired on an intra-application transfer;
on inter-application transfers, the Application.OnActivate event is
fired, instead. (See the Application section of Chapter 7.)

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

412

when using the number pad, it can be a lot faster to press Enter than to reach
over and press Tab. This code from the EnterAsTab project of the ch6/Forms
project group will do the trick:

procedure TEnterAsTabFrm.FormKeyDown(Sender: TObject; var Key: Word;

 Shift: TShiftState);

begin

 // Only works if KeyPreview is True!

 if (Key = Key_Return) or (Key = Key_Enter) then

 begin

 Key := 0;

 SelectNext(ActiveControl, not (ssShift in Shift), True);

 end;

end; // TEnterAsTabFrm.FormKeyDown

Note the way it sets Key to 0, to suppress further handling. The OnKeyUp
event will still be called when the key is released, but the OnKeyPress event
will not be called with a Key = ^M.

Forms are objects

One unfortunate aspect of both Kylix and Delphi is that controls are part of
the published interface of the form object. This means that they’re visible to
code in any unit that uses the form’s unit. You’ll sometimes see people write
code like ThisForm.Edit1.Text := ThatForm.Edit1.Text.

Don’t do this!
Remember that forms are objects, and maintain encapsulation. Pretend

that the controls aren’t really visible, and read and write any data via public
properties and methods. This is good for the same reason that encapsulation
is good: It limits the effects of changes. If you change the way a particular
datum is presented on the form, you only have to change one access function,
not all the code throughout the system that relied on object internals.

For example, if both ThisForm and ThatForm had a

public

 property CurrentFilename: string read GetCurrentFilename

 write SetCurrentFilename;

which was implemented via the private routines

��������	

��
�
���

���������
�������
���
����

����
�

Forms

413413

function TThisForm.GetCurrentFilename: string;

begin

 Result := Edit1.Text;

end; // TThisForm.GetCurrentFilename

procedure TThisForm.SetCurrentFilename(const Value: string);

begin

 Edit1.Text := Value;

end; // TThisForm.SetCurrentFilename

code like ThisForm.Edit1.Text := ThatForm.Edit1.Text could be replaced
by ThisForm.CurrentFilename := ThatForm.CurrentFilename. Even if the
“Edit1” control had a more descriptive name, the code that reads the form
property is simpler and clearer than the code that reads a property of a
control on the form. And, of course, if TThisForm needed any changes to
Edit1 to be mirrored here or there, it’s better to do this mirroring in one place—
the SetCurrentFilename method—than all throughout the application.

Class methods

How far do you take encapsulation? Sure, public properties are an abstraction of
the data in the controls, a contract with the rest of the system that’s less likely
to change than the specific controls on the form, but doesn’t reading and/or
writing a handful of properties constitute embedding a lot of knowledge
about the object into the rest of the system?

Frankly, I go back and forth on this. I do find that when a particular
dialog has a narrow purpose—perhaps getting a Yes/No answer, or a name
and password—that it makes a lot of sense to provide public access to the
form through a class procedure or a class function which is responsible for
both creating and popping up the dialog, and which returns the results
either as a function result or via var parameters.

Note

A simple example of this is the class procedure
TBitmapFormatsFrm.Popup (in the ch6/Bitmaps project) that
I listed in the section on Opening and closing forms, above.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

414

This means that the code that invokes this dialog knows only the one or
two functions that pop it up, not the handful of properties that configure it
and the handful of properties that represent the results. The calling code is
smaller and clearer and, if the dialog itself changes, the narrower interface is
less likely to get out of synch than a handful of inter-related properties.

Internal modularity

Forms are funny objects. Where other objects are tightly focused, modeling a
single entity or presenting a single service, forms have diffuse responsibilities.
They’re a visual representation of often heterogeneous data, and they need
to be able to read and write data models; they have UI methods, and often
they have various bits of UI state data. This is unavoidable. What belongs
together on a form is what makes the application easiest to use. Just as object
modeling can be difficult because what initially seems a natural unit may
actually be an ensemble of related concepts, so the clean modular lines of a
good model may not have much correlation with what belongs together in
an intuitive user interface.

Your first response to this issue should be to maintain a distinction
between a data model and a view of the model. The data model is the set of
objects that represent the real world phenomena that you’re modeling; your
user interface is a view of that model. Don’t write event handlers that modify
your data model directly; call methods, or read and write properties of the
model’s objects. Maintaining this distinction yields the same benefit that
encapsulation always does: if the internals of the model change, you only have
to change the access points, not part of this dialog and part of that dialog.

Maintaining a model/view distinction still leaves the view with a lot of
unrelated UI code and state data. The event handlers on this tab aren’t going
to fire when that tab is visible; the UI state data for this tab is never going to
have any correlation with the UI state data for that tab. The best response to
this muddle seems to me to be to remember that in some ways object oriented
languages just provided syntax to make easy what was already good practice:
Modularize. Break your code into subsystems, and don’t let the left hand
know what the right hand is doing. Don’t give this functional group knowledge
of how that functional group works: Create a private method for it to call.

This is a hard subject to write about, because you really can’t illustrate
complexity with simple examples. So, I’m mostly going to wave my hands
about and hope you understand. The way the vfind projects in Section 4
decompose routines into private methods is a partial example, as is the
PrivateProperties project in the ch6/Forms project group. This is a rather
useless little demo program with a couple of unexceptional private methods:

��������	

��
�
���

���������
�������
���
����

����
�

Forms

415415

function TPrivatePropertiesFrm.GetPanelText(N: integer): string;

begin

 Result := StatusBar.Panels[N].Text;

end; // TPrivatePropertiesFrm.GetPanelText

procedure TPrivatePropertiesFrm.SetPanelText(N: integer;

 const Text: string);

begin

 StatusBar.Panels[N].Text := Text;

end; // TPrivatePropertiesFrm.SetPanelText

What’s interesting about these methods is these three property decla-
rations in the private section:
property Filename: string index 0 read GetPanelText write SetPanelText ;

property FileLines: string index 1 read GetPanelText write SetPanelText ;

property Caret: string index 2 read GetPanelText write SetPanelText ;

These declarations give names to the various status bar panels. As the
form state changes, routines like

procedure TPrivatePropertiesFrm.ShowCaret;

begin

 with Memo.CaretPos do

 Caret := Format('%d:%d', [Line + 1, Col + 1]);

end; // TPrivatePropertiesFrm.ShowCaret

can update the status bar without ‘knowing’ that that’s what they’re doing. If
I need to change the panel assignments, I just have to change the index
constants in the property declarations.

I find that I use this approach whenever I have a paneled status bar. You
can also use this indexed property approach to give names to the various
parts of any other indexed component: the header row of a string grid, the
columns of a list view, and so on. More generally, this is an example of hiding
the details of how one part of the form works from the other parts, thus
increasing legibility and conserving flexibility.

Interfaces and forms

Forms can implement interfaces, just like any other object can. By default,
however, they implement them without reference counting. This is done to
avoid the problems of mixing object and interface references that I discussed

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

416

in Chapter 3. If you create an interface reference to a form that implements
an interface, the form will not Free itself when the interface reference goes away.

I think this is a sensible default behavior, and of course we’re still free to
add reference counting when that’s the behavior we want. For an illustration
of some of the differences between normal forms and reference counted
forms, see the InterfacesAndForms project of the ch6/Forms project group.
(See Figure 6-12.)

..

Interfaced forms in Delphi

“Old” Delphi programmers may be familiar with the problem of adding
interfaces to forms; forms (all components, for that matter) implement the
three methods of IUnknown (which is called IInterface in Kylix), but the
implementation relies on a VCLComObject property that’s normally Nil. If
you add an interface to a form without supplying a VCLComObject or
overriding this implementation, your applications will generate Access
Violations (SIGSEGV, in Linux-speak) as soon as you try to execute Form as
IUnknown.

Supplying a VCLComObject is not totally trivial, so most people just
cribbed some code from TInterfacedObject to create a TInterfacedForm.
You could then have reference-counted forms, or (carefully!) mix object
and interface references.

Familiar, yes? But out of date. Since Delphi 4, controls without a
VCLComObject implement IUnknown without reference counting. That
is, the reference count is always –1,11 and neither _AddRef nor _Release ever
change it—nor does _Release ever call Free. (Kylix, of course, does this the
same way.) This means that there are no problems mixing object and

11. Just as it is for string constants.

Figure 6-12. The InterfacesAndForms project

��������	

��
�
���

���������
�������
���
����

����
�

Forms

417417

 interface references for TComponents. You can pass a direct descendant
of TForm (that implements one or more interfaces) to any routine that
expects one of those interfaces as a parameter, without having to manually
_AddRef to avoid a disaster when the procedure returns. If you want a ref-
erence-counted form, you can still use TInterfacedObject-based code—

..

but you no longer have to.

The main form is just a normal TForm that implements the
ISetCaption interface—class(TForm, ISetCaption)—yet it can call
(Self as ISetCaption).SetCaption without courting disaster by not calling
_AddRef first. The main form isn’t reference counted.

The “normal” form isn’t reference counted, either. Each time you click
on the Create Normal button, you create a new form. Assigning a new value
to the Normal interface variable does dereference the old value, but this
doesn’t free the object. Similarly, clicking on the Release Normal button has
no visible effect.

procedure TForm1.CreateNormalBtnClick(Sender: TObject);

begin

 Normal := TFormWithInterface.Create(Application) as ISetCaption;

 Normal.SetCaption('A normal form, with an interface');

end; // TForm1.CreateNormalBtnClick

procedure TForm1.ReleaseNormalBtnClick(Sender: TObject);

begin

 Normal := Nil;

end; // TForm1.ReleaseNormalBtnClick

The code behind the “Interfaced” buttons is virtually identical12 but
since the “interfaced” form is reference counted, the buttons act very differ-
ently. Each time you click on the Create Interfaced button, you get a new
form that replaces any existing Interfaced form; when you click on the
Release Interfaced button, the form goes away.

12. Yes, that does mean “I don’t think it’s worth killing trees to print it.”

��������	

��
�
��!

���������
�������
���
����

����
�

Chapter 6 Visual objects

418

Splash screens

Many applications have splash screens. These are a window that comes up
while the application is initializing, often with a cool graphic, that go away by
themselves after a few seconds. These pose a modest difficulty for Kylix
applications.

The first auto-create form is the Main Form. When the main form closes,
the application closes. The process is terminated, and any other open
windows are closed. If we make our splash screen the main form, we can
hide it (without closing it) when we’re done, but then we’ve lost the main
form semantics; when we close the true main form, the application itself
doesn’t close. We could probably fiddle around with the Application object
(see below) but this is unappealing. Such fiddling has a way of being dependent
on the internal workings of a particular version. We don’t want to have to
rewrite our splash screen code every time Borland redoes some framework
code. Similarly, we could have the ‘real’ main form close the splash screen
when it closes, but while this is better, it’s still a bit fragile (what if the main
form changes?) and it requires that the main form know about the splash
form. The simplest solution would keep all the ‘magic’ in the splash screen
unit itself.

The SplashScreen project in the ch6/Forms project group illustrates just
such a simple solution that you can drop into your own projects. It’s based on
an ancestral splash form in lib/GenericSplashscreen.pas, which supplies
almost all the actual splash screen logic. All you need do to create your own
splash screens is to inherit from TGenericSplashFrm and add the look you
want, and then add a couple of lines at the bottom of your new splash
screen’s unit like

initialization

 TSplashFrm.Create(Application).Show;

Unit initialization blocks run before the main program block in the
program (.dpr) file, so this is functionally equivalent to editing the .dpr file
(Project ➤ View Source) file, and adding the Create().Show line before the
normal Application.Initialize first line

begin

 TSplashFrm.Create(Application).Show;

 Application.Initialize;

as some Delphi splash screen code you’ll find on the Net suggests. However,
not only do most people prefer to leave the .dpr file alone as much as possible
(some of the automatic editing that Kylix does to it can get confused if you’ve

��������	

��
�
���

���������
�������
���
����

����
�

Forms

419419

changed it yourself), I think it also makes a lot of Software Engineering sense to
keep the special splash screen code as self-contained as possible. Why spread it
through three files when two will do?

Calling TSplashFrm.Create instead of Application.CreateForm
(TSplashFrm, SplashFrm) means only that the first form created with
CreateForm—the main form—will be the main form. That is, the only
difference between an auto-create form, created in the .dpr file via
Application.CreateForm(TFormName, FormName) and a form manually
created via FormName := TFormName.Create(Application) is that CreateForm
is responsible for setting Application.MainForm.

The GenericSplashscreen unit is responsible for making sure that the
main form doesn’t come up until the splash screen times out. It’s pretty
short, so I’ll include the whole file here:

Listing 6-1. GenericSplashscreen.pas

unit GenericSplashscreen;

interface

uses

 SysUtils, Types, Classes, Variants,

 QGraphics, QControls, QForms, QDialogs, QTypes,

 QExtCtrls, QStdCtrls;

type

 TGenericSplashFrm = class(TForm)

 Timer: TTimer;

 procedure TimerTimer(Sender: TObject);

 procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

 procedure FormClose(Sender: TObject; var Action: TCloseAction);

 private

 public

 end;

implementation

{$R *.xfm}

procedure TGenericSplashFrm.TimerTimer(Sender: TObject);

begin

 Timer.Enabled := False; // allow form to close

 Close;

end; // GenericSplashFrm.TimerTimer

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

420

procedure TGenericSplashFrm.FormCloseQuery(Sender: TObject;

 var CanClose: Boolean);

begin

 CanClose := not Timer.Enabled;

end; // GenericSplashFrm.FormCloseQuery

procedure TGenericSplashFrm.FormClose(Sender: TObject;

 var Action: TCloseAction);

begin

 Action := caFree;

 Application.MainForm.Show;

end; // GenericSplashFrm.FormClose

initialization

 Application.ShowMainform := False;

end.

The first thing to note in GenericSplashscreen.pas is actually the penul-
timate line of the file, in the initialization block:

 Application.ShowMainform := False;

Setting ShowMainForm to False means that Application.Run won’t automat-
ically Show Application.MainForm, the way it normally does. It will still be
created as normal—and it can do any initialization it needs to do—and it
will still be the MainForm, but it won’t appear on the screen until the splash
screen times out and calls Application.MainForm.Show.

That’s the only real ‘magic’ here. The Timer starts running when the
splash screen shows, just like any other TTimer. At the end of the Timer’s
Interval, it fires off its OnTimer event, which sets Enabled to False and Close’s
the form. Setting Enabled to False turns the timer into a one-shot event; it won’t
fire again until Enabled is set True. In this case, that doesn’t matter, because
Enabled is being used only to avoid having to declare a special TimerTicked
flag for the OnCloseQuery event. I use Timer.Enabled to answer the close
query. (This doesn’t matter with borderless splash screens like the one in the
ch6/SplashScreen project, but you could easily have a bordered splash
screen if you wanted to.)

The OnClose event handler sets the close action to caFree, and calls
Application.MainForm.Show, which then comes up as normal. When you
close the main form, the application shuts down as it should.

��������	

��
�
���

���������
�������
���
����

����
�

Forms

421421

Asynchronous processing

Kylix is not Delphi

Delphi programmers—and Windows programmers in particular—are used
to the Windows message-driven model. Just about all events are ultimately
traceable to a message that Delphi receives and massages for us; we control
the behavior of controls like the edit and rich edit controls by sending mes-
sages, and we post messages to ourselves when we want to do asynchronous
processing. If we have a lengthy operation that we want to start after OnShow
and the first OnPaint, we PostMessage a custom message, and handle it with
a message procedure. The message goes to the end of the queue, and gets pro-
cessed once the app is up and running. Similarly, we commonly post update
messages from thread code, for the foreground thread to display the results
of a threaded calculation.

There’s no PostMessage in Kylix.
Fortunately, Qt does have a message loop, and Qt does let us create

custom messages. With just a little work, we can do the same sort of asyn-
chronous, message-based processing in a Kylix app that we can do under
Windows. This work is embedded in the lib/QMessages unit that the Asynch
project in the ch6/Forms project group uses. My QMessages unit defines
some functions to send and post messages to a form’s Qt event loop, and a
form that receives these messages. To use the QMessages framework, just
create a new form that inherits from my TMessageForm.

QMessages declares procedures to post pointers, integers, strings, and
interfaces, as well as routines that directly emulate the Windows SendMessage/
PostMessage API, which allows you to send a wParam and an lParam. They
all work similarly, so I’ll just walk through a basic PostPointer and how it gets
passed to its message handler, and leave you to read the code more closely if
you like.

Qt’s QCustomEvent allows you pass a numeric type code and a 32-bit
pointer to the event loop. The PostQtPointer function constructs a
QCustomEvent, then posts it (indirectly) to a form’s event queue.

Caution

As under Windows, SendMessage dispatches the event, and
returns the result code. The event is handled within the thread
that calls SendMessage. Do not call SendMessage from a non-
GUI thread! Use the various Post procedures to pass data from
background threads to the GUI thread. You can always be sure
that posting data will result in a message handler being called
asynchronously in the GUI thread.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

422

function PostQtPointer(Handle: QObjectH;

 Msg: SimpleMessages; Data: pointer): boolean;

var

 CustomEvent: QCustomEventH;

begin

 Result := True;

 CustomEvent := nil;

 try

 CustomEvent :=

 QCustomEvent_create(QEventType(Cardinal(QEventType_User) + Msg),

 Data);

 MessageQueue.Post(Handle, CustomEvent);

 except

 if Assigned(CustomEvent) then

 QCustomEvent_destroy(CustomEvent);

 Result := False;

 end;

end; // PostQtPointer

Now, it turns out that QApplication::postEvent is not thread-safe. The
simplest way to make it thread-safe and retain the benefits of letting back-
ground threads run at full speed (ie, not wait for TThread.Synchronize to
return) is to add another thread. MessageQueue.Post uses a critical section
to add the Handle/Event pair to a queue in a thread safe way, and then sends
a signal (via a TSimpleEvent) to the new thread. This new message queue
thread spends most of its time waiting on the TSimpleEvent. When the event
is signaled, the message queue thread uses Synchronize to call a method that
posts each message in the queue. Since the synchronized method runs in the
GUI thread, there’s no danger of its calling QApplication::postEvent while Qt
itself is. The only real consequence of this new message queue and its thread
is Synchronize runs very slowly when integrated debugging (Tools ➤ Debugger
Options) is turned on; applications that use QMessages will run much faster
from the command line (or when integrated debugging is turned off) than
when they run within Kylix’s debugger.

PostQtPointer is a hidden (implementation section) function. You call it
indirectly through the TMessageForm.PostPointer function or one of its siblings.

function TMessageForm.PostPointer(Msg: SimpleMessages; Data: pointer):

 Boolean;

begin

��������	

��
�
���

���������
�������
���
����

����
�

Forms

423423

 Result := PostQtPointer(Handle, Msg, Data);

end; // TMessageForm.PostPointer

Now, under Windows, message handling is a more fundamental part of
GUI programming than under Qt. Where Windows controls send messages
to applications whenever anything happens, Qt controls use a slot and signal
approach (see Section 3) that means that they don’t send messages: they call
the application directly. Because messages are less fundamental under Qt,
the messages that we send ourselves with QApplication::postEvent don’t
automatically get dispatched to a message handler the way that messages that
we send ourselves with PostMessage() do under Windows. Rather, we have to
override the form’s EventFilter function, and catch the type code there.

TMessageForm does this, and puts the type code and 32-bit Data into a
record that it then hands to Dispatch. As per the Borland documentation,
Dispatch then looks for a message handler with an identifier that matches the
type code, and passes the record to it. Here’s a somewhat abbreviated version:

function TMessageForm.EventFilter(Sender: QObjectH;

 Event: QEventH): Boolean;

var

 PointerMessage: TPointerMessage;

 EventType: QEventType;

begin

 Result := True;

 EventType := QEvent_type(Event);

 case EventType of

 QEventType_CMPostSimpleLow..QEventType_CMPostSimpleHigh:

 begin

 PointerMessage.Msg := Cardinal(EventType) - Cardinal(QEventType_User);

 PointerMessage.Data := QCustomEvent_data(QCustomEventH(Event));

 Dispatch(PointerMessage);

 end;

 else Result := inherited EventFilter(Sender, Event);

 end;

end; // TMessageForm.EventFilter

This EventFilter function means that forms that descend from
TMessageForm only have to declare a message method, and call PostPointer()
to pass a pointer to that method asynchronously. That is, the PostPointer call
will return, and the calling code can do whatever else it has to do, and the
message handler will be called as soon as any messages ahead of it in the
queue are processed. Importantly, the message handler will be called in the

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

424

GUI thread, not in whichever non-GUI thread may have called PostPointer(),
which means that the message handler can safely make GUI calls. (Threaded
code can’t do this; see Chapter 7.)

The following extracts from the ch6/Asynch project may make this a
bit clearer

const

 qt_Pointer = qtm_Simple + 3;

type

 TAsynchFrm = class(TMessageForm)

 Status: TLabel;

 PostPointerBtn: TButton;

 procedure PostPointerBtnClick(Sender: TObject);

 private

 procedure qtPointer(var Msg: TPointerMessage); message qt_Pointer;

 end;

procedure TAsynchFrm.PostPointerBtnClick(Sender: TObject);

begin

 inherited;

 PostPointer(qt_Pointer, pointer(Self));

end; // TAsynchFrm.PostPointerBtnClick

procedure TAsynchFrm.qtPointer(var Msg: TPointerMessage);

begin

 Status.Caption := 'Posted pointer was $' + IntToHex(integer(Msg.Data), 8);

end; // TAsynchFrm.qtPointer

Caution

Message methods require only that their single parameter be a
var parameter. They don’t do any type checking. You are respon-
sible for making sure that you post a pointer to a method that
expects a TPointerMessage, or an integer to a method that
expects a TIntegerMessage.

��������	

��
�
���

���������
�������
���
����

����
�

Forms

425425

Posting reference counted objects

Strings, interfaces, and dynamic arrays are actually just pointers to a reference
counted data block, so we can Post them, too. This is a bit trickier than
passing data that’s not reference counted, because the data is dereferenced
when the Post function returns, and without a bit of hackery it may not still
be around when the message handler gets fired. To make sure that the data
doesn’t get freed, we have to increment the reference count before we post a
pointer to the event queue.

With interfaces, of course, we can just use AddRef. Borland doesn’t
supply anything equivalent for strings, but the String_AddRef and
String_Release functions in my lib/GrabBag are pretty straightforward. (See
the sidebar for details.)

..

String_AddRef and String_Release

function String_AddRef(const S: string): pointer;

// increments ref count, returns pointer(S)

var

 Reference: string;

begin

 Result := pointer(S); // Typically used where storing a raw pointer

 Reference := S; // Increment reference count, unless < 0

 pointer(Reference) := Nil; // DON'T deref Reference on exit

end; // String_AddRef

The first line just assigns the address of the first character (if any—the
string may be '') to the Result. This is just a convenience feature, since the
most typical use of this function will be to pass a string via an untyped
pointer, as we’re doing here; to a callback function’s Data parameter;
or to a TCustomViewItem’s Data parameter. (For an example, see the
TMessageForm.PostString procedure in lib/QMessages.)

The real work of the function is done in the next two lines. Copying the
string to a local variable increments the reference count, if any. (Empty
strings aren’t reference counted, obviously, nor are string constants.) By
casting the local to pointer, we bypass the reference counting mechanism;
by setting the pointer to Nil, we assure that the string will not be derefer-
enced when the function exits and the string goes out of scope.

��������	

��
�
���

���������
�������
���
����

����
�

Chapter 6 Visual objects

426

procedure String_Release(const S: string);

var

 Reference: string;

begin

 pointer(Reference) := pointer(S); // Assign without changing reference

 // count; reference will be derefed on

 // exit, unless ref count < 0

end; // String_Release

Again, by assigning to pointer(Reference) and not simply to Reference,
we bypass the reference counting mechanism. The effect is to set the local
string to the passed in string. When the procedure exits, the string goes out
of scope, and the string is dereferenced.

..

It’s not possible to write code that works with any dynamic array, so
QMessages doesn’t offer any PostArray support.

The code to Post an interface is

function TMessageForm.PostInterface(Msg: SimpleMessages;

 const Data: IInterface): Boolean;

begin

 Data._AddRef; // So it doesn't get destroyed before EventFilter sees it

 Result := PostQtPointer(Handle, Msg, pointer(Data));

end;

Note

String constants are stored in the application’s code pages with a
reference count of –1. This is a special value that means that the
string constant doesn’t live on the heap as other strings do. String
constants are not reference counted the way string values are: The
reference count is never incremented, however many copies are
made; nor is the reference count ever decremented when a copy goes
out of scope. Because the string constant doesn’t live on the heap it
doesn’t ever need to be freed.

��������	

��
�
���

���������
�������
���
����

����
�

Forms

427427

and the corresponding bit from the TMessageForm.EventFilter case
statement is

QEventType_CMPostInterfaceLow..QEventType_CMPostInterfaceHigh:

begin

 InterfaceMessage.Msg := Cardinal(EventType) - Cardinal(QEventType_User);

 pointer(InterfaceMessage.Data) := QCustomEvent_data(QCustomEventH(Event));

 Dispatch(InterfaceMessage);

end;

Explicitly adding a reference means that the strings and interfaces ‘know’
that there’s a reference to them in the event queue. QMessages defines separate
message code ranges for strings, interfaces, and “simple” 32-bit data; this lets
the EventFilter know if a given 32-bit value needs to be assigned to a string or
interface message record. As in the String_AddRef and String_Release routines,
these assignments are via pointer casts that don’t touch the reference count. You
can think of the EventFilter code as redeeming the pledge made by the explicit
_AddRef in the Post call, or you can think of it as the Post call making an
assignment to a record in the EventFilter.

��������	

��
�
��!

���������
�������
���
����

����
�

��������	

��
�
���

���������
�������
���
����

����
�

